MINISTRY OF EDUCATION AND RESEARCH

"OVIDIUS" UNIVERSITY OF CONSTANTA FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

CURRICULUM

(contains 16 pages)

Domeniul Mathematics and natural sciences

fundamental: Wiatnematics and natural sciences

Domeniul de masterat: Computer Science

Ciclul de studii:

Programul de studii: Securitate cibernetică și învățare automată / Cyber Security and Machine Learning (CSML)

Durata studiilor: 4 semesters
Forma de învățământ: Full time (IF)
Tip masterat: Professional

Valid starting with the 2025 – 2026 ACADEMIC YEAR

Aleea Universității, nr.1, Campus, Corp A, cod 900470 Constanța, România Tel./Fax: +4 0241 606.407 / +4 0241 606.467 E-mail: rectorat@univ-ovidius.ro - Web page: www.univ-ovidius.ro

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Fundamental domain: Mathematics and Natural Sciences

Masterss Domain: COMPUTER SCIENCE

Study program: CYBER SECURITY AND MACHINE LEARNING

(CSML) / SECURITATE CIBERNETICA SI ÎNVĂTARE AUTOMATĂ Valid starting with the study cycle:2025-2027

Form of education: full-time (IF)

Duration of studies: 2 years

1. MISSION OF THE STUDY PROGRAM

The Master's program in Cybersecurity and Machine Learning (in English) within the field of Informatics aims to train specialists in two important areas of informatics: that of computer/cyber security and that of machine learning.

The program aims to create highly trained specialists in ensuring the protection of computer systems and information systems, data protection, computer network administration, development of specific software and development of artificial intelligence systems for the most diverse application areas, using the latest technologies in the field of machine learning.

2. PROFESSIONAL QUALIFICATION, RELATIONSHIP WITH THE CLASSIFICATION OF OCCUPATIONS IN ROMANIA (COR) - UPDATED FORM (OCCUPATIONS, POSSIBILITIES OF INTEGRATION ON THE LABOR MARKET)

The occupations, as described by COR, are the following:

Specialist in computer systems security procedures and tools (251402)

The ESCO competencies are the following:

- C1. Ability to implement ICT risk management: Develop and implement procedures to identify, assess, treat and mitigate ICT risks, Analyze and manage security risks and incidents, Recommend measures to improve the digital security strategy.
- C2. Ability to develop information security strategies in order to maximize information integrity, availability and confidentiality of data.
- C3. Ability to conduct data recovery following disasters in the operation or security of ICT systems, such as in terms of data recovery, identity and information protection and measures to be taken to prevent further problems.
- C4. Ability to perform ICT security tests, such as network penetration tests, wireless testing, code evaluations, wireless and/or firewall assessments, in accordance with industry-accepted methods and protocols to identify and analyze potential vulnerabilities.
- C5. Ability to manage disaster recovery plans that may cause data loss from the information system.
- C6. Ability to manage ICT systems security: Apply detection techniques for security. Understands cyber attack techniques and implements effective countermeasures.

Aleea Universității, nr.1, Campus, Corp A, cod 900470 Constanța, România Tel./Fax: +4 0241 606.407 / +4 0241 606.467 E-mail: rectorat@univ-ovidius.ro - Web page: www.univ-ovidius.ro

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Fundamental domain: Mathematics and Natural Sciences

Masterss Domain: COMPUTER SCIENCE

Study program: CYBER SECURITY AND MACHINE LEARNING Duration of studies: 2 years

(CSML) / SECURITATE CIBERNETICA ŞI ÎNVĂŢARE AUTOMATĂ Valid starting with the study cycle:2025-2027

C7. Ability to perform data analysis, collect data and statistics for testing and evaluation to generate statements and pattern predictions, in order to discover useful information in the decision-making process.

- C8. Ability to ensure and maintain database security.
- C9. Ability to create data models, using specific techniques and methodologies.
- C10. Ability to design cloud architectures and develop cloud computing services.

Transversal competencies:

- CT1. Applying work organization rules, understanding responsibilities and respecting professional ethics rules, as well as data security and confidentiality rules
- CT2. Identifying the role of an interdisciplinary team and assuming responsibilities corresponding to the professional and personal profile
- CT3. Effective use of information and communication sources and professional training
- CT4. Analytical thinking, problem-solving ability
- CT5. Ability to interpret, synthesize and critically analyze results

3. ADMISSION

Admission to master's degree studies is based on the Regulation regarding the organization and conduct of the Admission Competition to master's degree studies of Ovidius University of Constanța and on the basis of its own Methodology on the organization and conduct of the Admission Competition to Bachelor's and Master's degree studies, within the Faculty of Mathematics and Informatics.

4. STUDIES CERTIFICATION

The certification of studies is done with a master's degree in Computer Science (Level 7 - CNC). The diploma is accompanied by the diploma supplement containing the results of the assessments during schooling.

Form of education: full-time (IF)

Aleea Universității, nr.1, Campus, Corp A, cod 900470 Constanța, România Tel./Fax: +4 0241 606.407 / +4 0241 606.467 E-mail: rectorat@univ-ovidius.ro - Web page: www.univ-ovidius.ro

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Fundamental domain: Mathematics and Natural Sciences

Masterss Domain: COMPUTER SCIENCE

Form of education: full-time (IF)

Study program: CYBER SECURITY AND MACHINE LEARNING Duration of studies: 2 years (CSML) / SECURITATE CIBERNETICA ȘI ÎNVĂȚARE AUTOMATĂ Valid starting with the study cycle:2025-2027

PLAN DE ÎNVĂŢĂMÂNT **ANUL I**

						18	st Sen	neste	r (14	Weeks)			1st	Sem	ester	(14)	Weeks)		Hours	per disci	pline
No.	Discipline code	*C1	**C2	Disciplines	SI	С	S	L	P	FV	CR	SI	С	S	L	P	FV	CR	Total	Course	Appl icati ons
				Discipline																	
1.	CSML.1.1 .01	DF	DOB	Security of databases	69	2		2		Е	5								56	28	28
2.	CSML.1.1 .02	DS	DOB	Machine Learning	69	2		2		Е	5								56	28	28
3.	CSML.1.1 .03	DF	DOB	Advanced Programming Elements	83	1		2		Е	5								42	14	28
4.	CSML.1.2 .04	DF	DOB	Distributed Networks Systems								83	1		2		Е	5	42	14	28
5.	CSML.1.2 .05	DS	DOB	Data Mining								83	1		2		Е	5	42	14	28
6.	CSML.1.2 .06	DF	DOB	Advanced Database Systems								83	1		2		Е	5	42	14	28
7.	CSML.1.2 .07	DC	DOB	Ethics and Academic Integrity								36		1			С	2	14	14	0
		Disciplines	•				•					•									
OPT	IONAL I		1	T	1			1	1	I		ı					I				
8.	CSML.1.1 .08	DS	DOP	Malware Analysis	97	1		1		С	5								28	14	14
9.	CSML.1.1 .09	<i>D</i> 5		Pen Testing				1											20	11	
OPT	IONAL II																				
10.	CSML.1.1 .10	DS	DOP	Statistics for Data Science	97	1		1		C	5								28	14	14
11.	CSML.1.1 .11	טט	DOP	Cyber Security Simulation and Visualization Tools	9/	1		1			3								20	14	14
ОРТ	IONAL III																				

Aleea Universității, nr.1, Campus, Corp A, cod 900470 Constanța, România Tel./Fax: +4 0241 606.407 / +4 0241 606.467 E-mail: <u>rectorat@univ-ovidius.ro</u> - Web page: <u>www.univ-ovidius.ro</u>

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Fundamental domain: Mathematics and Natural Sciences

Masterss Domain: COMPUTER SCIENCE

Form of education: full-time (IF)

Study program: CYBER SECURITY AND MACHINE LEARNING

Duration of studies: 2 years

(CSML) / SECURITATE CIBERNETICA ŞI ÎNVĂŢARE AUTOMATĂ Valid starting with the study cycle:2025-2027

12.	CSML.1.2 .12	DS	DOP	E-Commerce Security								07	1		1		C	5	20	14	1.4
13.	CSML.1.2 .13	DS		Wireless and Mobile Devices Security								91	1		1		C	3	28	14	14
OPT	IONAL IV																				
14.	CSML.1.2 .14	DS	DOP	Programming applications in the Linux operating system								97	1		1		E	5	28	14	14
15.	CSML.1.2 .15	DS	DOI	Advanced Cryptographic Techniques								91	1		1		E	J	26	14	14
		Total phy	sical hours per	week /Total number of verification forms/credits	415	7	0	8	0	3E+2C +0V	25	479	5	1	8	0	4E+2C +0V	27	406	182	224
				Ore pe saptamana			15							14							

PROFESSIONA	L TRAINING PRAC	TICE															
16. CSML.1.2.	DC DOB	Specialization Practice I	97		2	!	С	5							28	0	28
17. CSML.1.2.	DC DOB	Specialization Practice II							47			2	C	3	28	0	28
Total physical ho	ours per week/Total r	number of verification forms/credits	512	7	0 10	0	0 3+2+1	30	526	5	1	10	0 4+3+0	30	462	182	280
Grand total	Total physical hours	per week/Total number of verification forms/credits	512		15+2		3E+3C+ 0V	30	526		14-	-2	4Ex+3C +V	30	Ratio	o A/C =	1.23

LEGEND: *CI = content criterion: DF – fundamental subjects, DS – specialization subjects, DC – complementary subjects.

^{**}C2 = obligation criterion: DOB – obligatory subjects, DOP – optional subjects;.

SI - Individual Study, C - course, S - seminar, L - Laboratory, P - Project, CR - Credits, FV - form of verification, Ex - Exam, C - Colloquium, V-Verification

Aleea Universității, nr.1, Campus, Corp A, cod 900470 Constanța, România Tel./Fax: +4 0241 606.407 / +4 0241 606.467 E-mail: rectorat@univ-ovidius.ro - Web page: www.univ-ovidius.ro

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Fundamental domain: Mathematics and Natural Sciences

Masterss Domain: COMPUTER SCIENCE

Form of education: full-time (IF)

Study program: CYBER SECURITY AND MACHINE LEARNING Duration of studies: 2 years (CSML) / SECURITATE CIBERNETICA ȘI ÎNVĂȚARE AUTOMATĂ Valid starting with the study cycle:2025-2027

PLAN DE ÎNVĂŢĂMÂNT **ANUL II**

						1s	t Sem	este	r (14	weeks)			1st	Seme	ester	(14	weeks)		Hours p	er disci	pline
No.	Discipline Code	*C1	**C2	Disciplines	SI	С	S	L	P	FV	CR	SI	C	S	L	P	FV	CR	Total	Cours e	App licat ions
				Disciplines																	
1.	CSML.2.1 .01	DF	DOB	Applied Criptography	83	1		2		Е	5								42	14	28
2.	CSML.2.1 .02	DS	DOB	Semantic Web and Ontologies	69	2		2		Е	5								56	28	28
3.	CSML.2.2 .03	DF	DOB	Generative Artificial Intelligence	69	2		2		Е	5								56	28	28
4.	CSML.2.2 .04	DS	DOB	Security of Web Applications								83	2		1		Е	5	42	28	14
5.	CSML.2.2 .05	DF	DOB	Cloud Architectures								83	2		1		Е	5	42	28	14
6.	CSML.2.2 .06	DS	DOB	Research and documentation for the preparation of the Dissertation Thesis								97		2			С	5	28	0	28
7.	CSML.2.2 .07	DC	DOB	Elaboration of the Dissertation Thesis								69		4			С	5	56	0	56
		opționale																			
Pach	et OPTION	AL V	I							1				ı						1	
8.	CSML.2.1 .08	DS	DOP	Form Recognition and Data Search in the Web	97	1		1		С	5								28	14	14
9.	CSML.2.1 .09		Boi	Cyber Security Entrepreneurship	71			1											20	11	11
Pach	et OPTION	AL VI																			
10.	CSML.2.1 .10			Information Technology and Communications Forensics																	
11.	CSML.2.1 .11	DS	DOP	Data Mining in Relational Databases	97	1		1		С	5								28	14	14
12.	CSML.2.1			Quantum Computing																	

Aleea Universității, nr.1, Campus, Corp A, cod 900470 Constanța, România Tel./Fax: +4 0241 606.407 / +4 0241 606.467 E-mail: <u>rectorat@univ-ovidius.ro</u> - Web page: <u>www.univ-ovidius.ro</u>

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Fundamental domain: Mathematics and Natural Sciences

Masterss Domain: COMPUTER SCIENCE

Form of education: full-time (IF)

Study program: CYBER SECURITY AND MACHINE LEARNING

Duration of studies: 2 years

(CSML) / SECURITATE CIBERNETICA ŞI ÎNVĂŢARE AUTOMATĂ Valid starting with the study cycle:2025-2027

	.12																			
Pac	het OPTION	AL VII																		
13	CSML.2.2 .13			Autonomous AI Agents: Design, Development, and Security in Cyber- Physical Systems																
14	CSML.2.2 .14	DS	DOP	Online Threats to Modern Organizations							97	1		1		Е	5	28	14	14
15	CSML.2.2 .15			Software security																
		Total phy	sical hours per	week /Total number of verification forms/credits	415	7	0	8	0 3E+2C +0V	25	429	5	6	3	0	3E+2C +0V	25	406	168	238
	•		•	Hours per week			15						14			-			•	

STAGII DE PRA	ACTICĂ																	
16. CSML.2.1.	DC	DOB	Specialization Practice III	97			2	С	5							28	0	28
17. CSML.2.2.	DC	DOB	Specialization Practice IV							97			2	С	5	28	0	28
Total physical ho	ours per weel	k /Total nu	umber of verification forms/credits	512	7	0 1	0	0 3+2+1	30	526	5	6	5	0 3+3+0	30	462	168	294
Grand Total	Total physic	al hours p	er week /Total number of verification forms/credits	512		15+2	,	3E+3C+ 0V	30	526		14	+2	3Ex+3C +0V	30	Rati	o A/C =	1.42

LEGEND: *C1 = content criterion: DF - fundamental subjects, DS - specialization subjects, DC - complementary subjects.

^{**}C2 = obligation criterion: DOB – obligatory subjects, DOP – optional subjects;.

SI - Individual Study, C - course, S - seminar, L - Laboratory, P - Project, CR - Credits, FV - form of verification, Ex - Exam, C - Colloquium, V-Verification

Aleea Universității, nr.1, Campus, Corp A, cod 900470 Constanța, România Tel./Fax: +4 0241 606.407 / +4 0241 606.467 E-mail: rectorat@univ-ovidius.ro - Web page: www.univ-ovidius.ro

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Fundamental domain: Mathematics and Natural Sciences

Masterss Domain: COMPUTER SCIENCE Form of education: full-time (IF) Study program: CYBER SECURITY AND MACHINE LEARNING Duration of studies: 2 years

(CSML) / SECURITATE CIBERNETICA ŞI ÎNVĂŢARE AUTOMATĂ Valid starting with the study cycle:2025-2027

5. GENERAL SUMMARY

according to the criterion of the content of the subjects in the curriculum

Na	Dissiplines	Number	of hours	То	tal
No.	Disciplines	Ist Year	IInd Year	Hours	%*
1	fundamental (DF)	182	140	322	39.66%
2	specialization (DS)	210	210	420	51.72%
4	complementary (DC)	14	56	70	8.62%
	TOTAL	406 (+56)*	406 (+56*)	812 (+112)*	100%

^{*}Stagii de practică

6. GENERAL SUMMARY

according to the criterion of compulsory subjects in the curriculum

No.	Dissiplinas	Number	of hours	То	tal
NO.	Disciplines	Ist Year	IInd Year	ore	%*
1	obligatory (DOB)	294	322	616	75.86%
2	optional (DOP)	112	84	196	24.14%
	TOTAL	406 (+56)*	406 (+56)*	812(+112)*	100.00%

^{*}Stagii de practică

GENERAL RATIO Applications/Course (according to ARACIS specific Quality Standards) = 1.32

Aleea Universității, nr.1, Campus, Corp A, cod 900470 Constanța, România Tel./Fax: +4 0241 606.407 / +4 0241 606.467 E-mail: rectorat@univ-ovidius.ro - Web page: www.univ-ovidius.ro

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Fundamental domain: Mathematics and Natural Sciences

Masterss Domain: COMPUTER SCIENCE Form of education: full-time (IF) Study program: CYBER SECURITY AND MACHINE LEARNING Duration of studies: 2 years (CSML) / SECURITATE CIBERNETICA ȘI ÎNVĂȚARE AUTOMATĂ Valid starting with the study cycle:2025-2027

7. EXPLANATORY NOTES ON PRACTICE

YEAR	CONTENT OF THE ACTIVITIES
	The Specialization Practice is organized in the form of weekly activities and aims to carry out projects on an established topic.
	Specialization Practice I
I	Analysis, design and implementation of a software project using a relational database: requirements analysis, software design, relational database
	design, project implementation. Specialization Practice II
	Development of a software system with implementation of cybersecurity measures: software analysis and design, database design and
	implementation respecting security requirements, system testing, documentation writing.
	The Specialization Practice is organized in the form of weekly activities and aims to carry out projects on an established topic.
	Specialization Practice III
11	Development and querying of RDF data sources, as part of a robust and secure software system: querying SPARQL data sources, creating and
11	validating RDF documents.
	Specialization Practice IV
	Development of a software system based on ontology: analysis of software requirements, design of the database associated with an ontology
	respecting security constraints, design and implementation of system classes, system testing, writing documentation.

Aleea Universității, nr.1, Campus, Corp A, cod 900470 Constanța, România Tel./Fax: +4 0241 606.407 / +4 0241 606.467 E-mail: rectorat@univ-ovidius.ro - Web page: www.univ-ovidius.ro

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Fundamental domain: Mathematics and Natural Sciences

Masterss Domain: COMPUTER SCIENCE

Duration of studies: 2 years

Study program: CYBER SECURITY AND MACHINE LEARNING

(CSML) / SECURITATE CIBERNETICA SI ÎNVĂTARE AUTOMATĂ Valid starting with the study cycle:2025-2027

Form of education: full-time (IF)

WEEKLY STRUCTURE OF THE UNIVERSITY YEAR

		Teac	hing Activities		Ex	amn Session	ıs			Vacanțe	
YEAR	Ist Se	emester	IInd Sem	ester	Winter	Summer	Debts	Practică	Winter	Spring	Summer
	weeks	hours/ week	weeks	hours/ week	Weeks	Weeks	Weeks	Hours	Weeks	Weeks	weeks
I	14	15	14	14	3	3	2	56=28+28	2	1+1(Paști)	10
II	14	15	14	14	3	3	2	56=28+28	2	1+1(Paști)	_

9. SPECIFIC CONDITIONS FOR ACCESS/ADMISSION, PROMOTION/EQUIVALENCE OF THE YEAR OF STUDY/SOME DISCIPLINES, TRANSFER ETC.

The professional activity of students is quantitatively assessed by awarding the number of credits allocated to each subject in the curriculum and by awarding a grade between 1 and 10 to the corresponding exams, seminars, assignments, projects and laboratory reports. The minimum grade required to pass an exam/colloquium is 5. The results/grades obtained by students during their academic training are recorded in catalogues and program registers. After the final exam and the defense of the bachelor's thesis, students graduate and receive a Master's Degree and a Master's Degree Supplement. The promotion of the study year is achieved with a minimum of 30 credits.

CHOICE OF OPTIONAL SUBJECTS BY STUDENTS 10.

The choice of optional subjects is made in the last weeks of the 2nd semester, for the following academic year, with the exception of students in the 1st year of study, who choose at the time of enrollment in the Admissions Competition. Students complete a standard application containing the list of subjects on offer for the optional subjects in both semesters of the following academic year and submit, through the head of year, to the faculty secretariat, the completed applications. The optional subject that meets the maximum number of applications from students will be supported. In the event that there are two or more subjects with the maximum number of applications, the faculty council will decide which subject will run.

Aleea Universității, nr.1, Campus, Corp A, cod 900470 Constanța, România Tel./Fax: +4 0241 606.407 / +4 0241 606.467 E-mail: rectorat@univ-ovidius.ro - Web page: www.univ-ovidius.ro

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Fundamental domain: Mathematics and Natural Sciences

Masterss Domain: COMPUTER SCIENCE

Form of education: full-time (IF)

Study program: CYBER SECURITY AND MACHINE LEARNING

Duration of studies: 2 years

(CSML) / SECURITATE CIBERNETICA ȘI ÎNVĂȚARE AUTOMATĂ Valid starting with the study cycle:2025-2027

11. STRUCTURE OF THE FINAL EXAM

The dissertation exam consists of a single test, namely Oral test: dissertation presentation. The exam ends with the award of a grade. The passing grade for the exam is at least 6.00. 10 credits are awarded for passing the dissertation exam.

12. **LEARNING OUTCOMES**

No.		LEARNING OUTCOMES		Digginling
	Knowledge	Skills	Responsibility and autonomy	Disciplines
1.	The student/graduate identifies and argues fundamental concepts of data and relational database security.	The student designs, develops and demonstrates software solutions using various security techniques and policies specific to relational databases.	The student/graduate performs actions to develop software systems that use databases and manages the actions necessary to ensure maximum security of relational databases.	Security of Databases, Advanced Database Systems, Software Security Specialization Practice I
2.	The student/graduate identifies and implements strategies for managing security risks in software systems and organizations.	The student/graduate implements procedures to identify, evaluate and treat security risks to information systems, such as unauthorized access or data leaks, analyzes and manages security incidents.	The student/graduate implements procedures to identify, evaluate and treat security risks to information systems, such as unauthorized access or data leaks, analyzes and manages security incidents. The student/graduate ethically and responsibly builds security strategies for information systems and manages security incidents	Malware Analysis, Pen Testing, Software Security Specialization Practice I Specialization Practice IV

Aleea Universității, nr.1, Campus, Corp A, cod 900470 Constanța, România Tel./Fax: +4 0241 606.407 / +4 0241 606.467 E-mail: rectorat@univ-ovidius.ro - Web page: www.univ-ovidius.ro

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Fundamental domain: Mathematics and Natural Sciences

Masterss Domain: COMPUTER SCIENCE

Study program: CYBER SECURITY AND MACHINE LEARNING

Duration of studies: 2 years

Form of education: full-time (IF)

(CSML) / SECURITATE CIBERNETICA ŞI ÎNVĂŢARE AUTOMATĂ Valid starting with the study cycle:2025-2027

			appropriately.	
3.	The student/graduate explains modern cyber threats, including malware, network attacks, and vulnerabilities in web and mobile environments.	The student/graduate analyzes malicious software, conducts penetration tests, and uses simulation tools to model and mitigate cyber attacks.	The student/graduate proactively identifies potential security threats and applies defensive techniques in an ethical and responsible manner.	Malware Analysis Pen Testing Cyber Security Simulation and Visualization Tools Wireless and Mobile Devices Security Specialization Practice II
4.	The student/graduate understands secure coding principles, common vulnerabilities, and best practices in software security.	The student/graduate develops software applications with integrated security mechanisms and audits existing code for vulnerabilities	The student/graduate ensures software reliability and security throughout the development lifecycle and demonstrates accountability for secure coding practices.	Software Security Advanced Programming Elements Programming applications in the Linux operating system Security of Web Applications Specialization Practice II
5.	The student/graduate understands theoretical and practical aspects of classical and modern cryptographic systems.	The student/graduate implements encryption, hashing, and secure communication protocols in realworld applications.	The student/graduate applies cryptographic techniques responsibly to ensure data confidentiality, integrity, and authenticity.	Advanced Cryptographic Techniques Applied Cryptography Wireless and Mobile

Aleea Universității, nr.1, Campus, Corp A, cod 900470 Constanța, România Tel./Fax: +4 0241 606.407 / +4 0241 606.467 E-mail: rectorat@univ-ovidius.ro - Web page: www.univ-ovidius.ro

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Fundamental domain: Mathematics and Natural Sciences

Masterss Domain: COMPUTER SCIENCE

Form of education: full-time (IF)

Study program: CYBER SECURITY AND MACHINE LEARNING Duration of studies: 2 years (CSML) / SECURITATE CIBERNETICA ȘI ÎNVĂȚARE AUTOMATĂ Valid starting with the study cycle:2025-2027

				Devices Security
6.	The student/graduate understands core principles of machine learning and data mining and their application to cybersecurity problems	The student/graduate applies machine learning models to detect anomalies, classify threats, and support decision-making in cybersecurity contexts.	The student/graduate responsibly applies AI techniques in security applications and evaluates the ethical implications of automated decision systems.	Machine Learning Statistics for Data Science Data Mining Data Mining in Relational Databases Generative AI
7.	The student/graduate explains protocols and architectures for secure network and cloud environments.	The student/graduate configures and secures distributed systems and cloud services, applying principles of network segmentation and virtualization.	The student/graduate ensures confidentiality and availability of networked and cloud-based services in compliance with best practices.	Distributed Networks Systems Cloud Architectures Wireless and Mobile Devices Security
8.	The student/graduate understands security models and protocols for securing e-commerce platforms and digital transactions.	The student/graduate evaluates and implements secure payment systems, authentication mechanisms, and transaction auditing.	he student/graduate builds and maintains secure digital services that protect user data and support business continuity.	E-Commerce Security Advanced Cryptographic Techniques Security of Web Applications
9.	The student/graduate understands semantic web principles, ontologies, and knowledge representation.	The student/graduate models, organizes, and searches information using semantic structures and	The student/graduate autonomously applies semantic reasoning tools for organizing and retrieving data in	Semantic Web and Ontologies Form Recognition and Data

Aleea Universității, nr.1, Campus, Corp A, cod 900470 Constanța, România Tel./Fax: +4 0241 606.407 / +4 0241 606.467 E-mail: rectorat@univ-ovidius.ro - Web page: www.univ-ovidius.ro

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Fundamental domain: Mathematics and Natural Sciences

Masterss Domain: COMPUTER SCIENCE

Form of education: full-time (IF)

Study program: CYBER SECURITY AND MACHINE LEARNING Duration of studies: 2 years (CSML) / SECURITATE CIBERNETICA ȘI ÎNVĂȚARE AUTOMATĂ Valid starting with the study cycle:2025-2027

		intelligent algorithms.	complex systems.	Search in the Web
				Generative AI
				Specialization Practice III Specialization Practice IV
10.	The student/graduate identifies key concepts in digital forensics and understands legal and ethical requirements related to evidence collection.	The student/graduate performs forensic investigations, extracts digital evidence, and documents findings for legal proceedings.	The student/graduate acts with integrity and adherence to legal standards when conducting digital investigations.	Information Technology and Communications Forensics Ethics and Academic Integrity
				Online Threats to Modern Organizations
11.	The student/graduate understands the cybersecurity market, startup development, and the innovation process in technological	The student/graduate designs and evaluates cybersecurity products or services with business viability and innovation potential.	The student/graduate independently initiates and manages innovation projects in the field of cybersecurity.	Cybersecurity Entrepreneurship Cybersecurity Simulation and Visualization Tools
	entrepreneurship.			Generative Artificial Intelligence
				Autonomous AI Agents: Design, Development, and Security in Cyber-Physical Systems
				Research and documentation for the

Aleea Universității, nr.1, Campus, Corp A, cod 900470 Constanța, România Tel./Fax: +4 0241 606.407 / +4 0241 606.467 E-mail: rectorat@univ-ovidius.ro - Web page: www.univ-ovidius.ro

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Fundamental domain: Mathematics and Natural Sciences

Masterss Domain: COMPUTER SCIENCE

Study program: CYBER SECURITY AND MACHINE LEARNING Duration of studies: 2 years (CSML) / SECURITATE CIBERNETICA ȘI ÎNVĂȚARE AUTOMATĂ Valid starting with the study cycle:2025-2027

				preparation of the Dissertation Thesis Elaboration of the Dissertation Thesis
12.	The student/graduate understands the principles of quantum computing and generative artificial intelligence, as well as their implications for security.	The student/graduate applies emerging technologies to model security threats and improve protective measures.	The student/graduate stays up to date with technology trends and integrates innovative tools into cybersecurity workflows responsibly.	Quantum Computing Statistics for Data Science Generative AI Applied cryptography Research and documentation for the preparation of the Dissertation Thesis Elaboration of the Dissertation Thesis
13.	The student/graduate understands and explains the fundamental concepts of autonomous agents, agent architectures and their role in cyberphysical systems, as well as the challenges related to their security.	The student designs, develops, and deploys autonomous AI agents capable of operating intelligently in cyber-physical environments, using modern planning, reasoning, and integration techniques with machine learning models. He also identifies and applies security measures to protect the agent's behavior and communications.	The student/graduate is able to critically evaluate the behavior of autonomous agents, anticipate security risks in cyber-physical systems, and propose ethical, secure, and robust solutions for their autonomous operation. Takes responsibility for the agent's decisions and their effects in the operational environment.	Autonomous AI Agents: Design, Development, and Security in Cyber-Physical Systems Software security Generative AI

Form of education: full-time (IF)

Aleea Universității, nr.1, Campus, Corp A, cod 900470 Constanța, România Tel./Fax: +4 0241 606.407 / +4 0241 606.467 E-mail: <u>rectorat@univ-ovidius.ro</u> - Web page: <u>www.univ-ovidius.ro</u>

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Fundamental domain: Mathematics and Natural Sciences

Masterss Domain: COMPUTER SCIENCE

Study program: CYBER SECURITY AND MACHINE LEARNING Duration of studies: 2 years

(CSML) / SECURITATE CIBERNETICA ȘI ÎNVĂȚARE AUTOMATĂ Valid starting with the study cycle:2025-2027

14.	\mathcal{E}	The student/graduate designs and	The student/graduate assesses the	Machine Learning
	fundamental principles of autonomous AI agents and generative models (Generative AI), understands the architectures used for content generation and their integration into autonomous agent systems for	develops autonomous agents that use generative models for decision-making, plan generation or context-adapted content. Uses modern frameworks for training and integrating LLM (Large Language	impact and risks associated with the use of generative AI in autonomous agents, applies ethical and security principles in the development and implementation process. Is able to make autonomous decisions to	Autonomous AI Agents: Design, Development, and Security in Cyber-Physical Systems
	complex applications in cyber- physical environments.	Models) or multimodal generative models in security, simulation and intelligent interaction applications.	guarantee the transparency, robustness and security of the proposed solutions.	Generative Artificial Intelligence
15.	The student/graduate knows the norms of professional and academic ethics, as well as the legislative and institutional framework of academic integrity.	The student/graduate recognizes ethical dilemmas and makes responsible decisions in teaching and research activities.	The student/graduate acts with integrity and responsibility in compliance with ethical principles and deontological norms. Ethics and academic integrity.	Ethics and Academic Integrity

13. OPPORTUNITIES TO CONTINUE STUDIES OR ACCESS OTHER FORMS OF PERSONAL AND PROFESSIONAL DEVELOPMENT

Graduates of this master's program can enroll in a doctorate or pursue other postgraduate programs for professional and personal development in the same field.

Form of education: full-time (IF)