

Introducere în

CTF - CAPTURE THE FLAG

www.sts.ro IULIE 2025

Ce sunt CTF-urile?

Competițiile de tip **CTF (Capture The Flag)** sunt concursuri de securitate cibernetică care oferă o oportunitate excelentă de a vă testa și de a vă îmbunătăți abilitățile de securitate și de rezolvare a problemelor.

Prin provocări de hacking cu diferite niveluri de dificultate și moduri de rezolvare, aceste concursuri evaluează abilitățile și cunoștințele despre securitatea cibernetică, munca în echipă și creativitatea.

Participarea poate fi individuală sau în echipă, iar punctajul depinde de dificultatea provocării și timpul de rezolvare.

Tipuri de competiții CTF

Jeopardy

- Cel mai de întâlnit tip de CTF
- Fiecare provocare necesită găsirea unui "**flag**" pentru care se acordă **puncte**
- Multiple categorii de provocări: web, crypto, pwn, reverse, steganografie, etc.

King of the Hill

- Scopul este să preiei controlul asupra unui sistem (Ex. o mașină virtuală) și să rămâi în posesia lui cât mai mult timp
- Echipele se luptă simultan pentru acces, modificând parole, configurând backdoor-uri sau ştergând accesul altora
- Accentul e pus pe menținerea persistenței și strategie în timp real

Attack & Defense

- Echipele primesc același sistem vulnerabil
- Trebuie să-l **apere** și, în același timp, să **atace** sistemele celorlalți.
- Necesită experiență în rețelistică, administrare de servere și dezvoltare de exploit-uri

Hybrid

- Combină mai multe tipuri, spre exemplu Jeopardy + Attack-Defense
- Se întâlnește la finalele unor competiții importante
- Mai greu de organizat, dar extrem de provocator

Ce tipuri de provocări există?

Web

Exploatarea vulnerabilităților din aplicații web: SQLi, XSS, command injection

Crypto

Implică spargerea mesajelor criptate sau exploatarea unor algoritmi de criptare slabi sau implementați necorespunzător

Forensics

Analiza fișierelor PCAP, imagini de disc, dump-uri de memorie sau jurnalizări pentru a descoperi informații ascunse sau dovezi digitale

Steganografie

Ascunderea de date în imagini, fisiere video sau audio

Reverse engineering

Analiza codului executabil pentru a înțelege cum funcționează

Binary Exploitation/Pwn

Găsirea și exploatarea vulnerabilităților din fișiere executabile

Misc

Provocări diverse, uneori de logică sau cultură generală

Cine poate participa?

Începători / Studenți

- Ideal pentru studenți la informatică, automatică, matematică sau inginerie
- Multe CTF-uri sunt educaționale, axate pe învățare prin practică
- Platforme ca picoCTF sau TryHackMe sunt concepute special pentru începători

Unde se desfășoară?

Profesioniști / Specialiști IT

- Este o oportunitate de perfecționare în domenii precum pentesting, sysadmin, devsecops, analiză malware
- Participă pentru a-şi menține abilitățile actualizate sau pentru a experimenta tehnici noi într-un mediu controlat

Majoritatea CTF-urilor sunt online, deci poți participa de oriunde, iar unele competiții din cadrul unor conferințe mari precum DEFCON, DEFCAMP, prezența este fizică.

Ce ai nevoie ca să participi?

- Trei aspecte sunt importante ca să poți participa la un CTF: curiozitatea, perseverența și dorința de a învăța
- Oricine poate începe fie că ești elev, student sau profesionist în domeniul IT
- Cunoștințele de bază în Linux, programare, rețelistică sau criptografie sunt utile, dar nu obligatorii. De cele mai multe ori, înveți pe parcurs, direct din provocări

Ce tool-uri sunt folosite?

Generale

- Kali Linux, Parrot OS sisteme de operare cu multe tool-uri preinstalate
- Google & Writeups căutarea este o unealtă esențială
- Notepad++, VS Code analiză și editare fișiere

Web

- Burp Suite, Postman testare și manipulare de cereri HTTP
- SQLmap detecție și exploatare SQL injection

Crypto

- CyberChef decodare, criptare, transformări rapide
- SageMath calcule matematice avansate

Forensics

- Wireshark analiză trafic de rețea (PCAP-uri)
- binwalk extragere de date din fișiere binare
- Volatility analiză de memorie RAM
- comenzi: file, strings, foremost, exiftool analiză fișiere suspecte

Pwn / Binary Exploitation

- Ghidra, IDA Free reverse engineering
- GDB, pwndbg, pwntools debugging și exploit scripting

CHALLENGES AHEAD

Cum arată o provocare?

1001700

Categorie: Crypto - Cifrul Cezar

Provocare:

Am interceptat un mesaj criptat. Se pare că a fost folosit un cifru Cezar. Poți să găsești flag-ul?

fliuxo fhcdu hvwh lqwhuhvdqw!

Ce faci?

- Știi că un cifru Cezar deplasează literele alfabetului.
- Încerci să inversezi criptarea cu o shiftare de 3 (cea mai comună valoare).
- Mesajul devine:

cifrul cezar este interesant!

În funcție de format, flag-ul poate fi:

flag{cifrul cezar este interesant!}

Flag: cifrul cezar este interesant!

Rezolvare în CyberChef

Bootcamp STS

Participanți: 20 de studenți

Loc de desfășurare: București și Brașov

Durata: 7 zile

Subiecte abordate prin activități hands-on și lucru în echipă:

- comunicații securizate voce-video-date
- reţelistică
- dezvoltare software
- cloud computing
- cybersecurity
- blockchain
- infosec
- infrastructuri critice

www.bootcamp.sts.ro

www.sts.ro IULIE 2025

Look

Categorie: Steganografie

Descriere:

Încearcă să găsești flag-ul ascuns în imagine. Este o provocare simplă de steganografie - mesajul este ascuns într-un mod subtil în fișierul imagine.

Task:

Poți să citești în binar?

Timp rezolvare: 5 min

Link descărcare:

https://files.stscloud.ro/s/b9ysXgrnrRotjHQ

Parola:

Parola_look1

Look

Imaginea conține o secvență de caractere formate din O și 1, care pare a fi un text scris în binar. Pentru a putea decodifica mesajul, trebuie mai întâi să extragem conținutul binar din imagine.

În loc să copiem manual fiecare cifră, putem folosi un instrument de tip OCR (Optical Character Recognition), care recunoaște automat textul din imagine. Un exemplu simplu este <u>https://www.onlineocr.net</u>, care transformă imaginea într-un text editabil.

După extragerea textului, acesta poate fi convertit din binar în ASCII pentru a obține flag-ul.

SOLUȚIE

SOLUȚIE

M	-•	onimeocrimet

OCR HOME OCR API BONUS PROGRAM PDF TO WORD PDF TO EXCEL PDF TO DOC PDF TO IMAGE

IMAGE TO TEXT CONVERTER - OCR ONLINE

Picture to text converter allows you to extract text from image or convert PDF to Word, Excel or Text formats using Optical Character Recognition software online

L STEP - Upload image	2 STEP - Select language and output format	3 STEP - Convert image	
SELECT FILE	ENGLISH V Microsoft Word (docx) V	CONVERT	
ook.png			
Download Output File			
Ja boundad output the			
	0111 00111010 00100000 01100010 01100010 00110000 0011011	100101 01100110 00110000 00110011 00110001	
1000110 01101100 01100001 0110 0110110 00110110 00110010 0011	0001 00110001 00110000 01100011 00110011 01100011 00110010 00	0110000 00110011 00110010 00110010 01100010	
1000110 01101100 01100001 0110 0110110 00110110 00110010 0011 0110101 00111000 00111000 0110	0001 00110001 00110000 0110011 00110011	110000 00110011 00110010 00110010 01100010	
1000110 01101100 01100001 0110 0110110 00110110 001100010 0110101 00111000 00111000 0110	0001 00110001 00110000 01100011 00110011 01100011 00110010 00 00100 01100001 00111001 00110011	110000 00110011 00110010 00110010 01100010	

Operations 463	Recipe	^ 🖻 🖿 🗊	Input	+ 🗅 🕀 📋 !	
binary	From Binary	∧ ⊗ II	01000110 01101100 01100001 01100111 0 01100010 01100010 00110000 00110111 0	00111010 00100000 01100101 01100110	
To Binary	Delimiter Space	Byte Length 8	00110000 00110011 00110001 00110110 0 00110001 00110001 00110000 01100011 0	00110110 00110010 00110011 01100011	
From Binary			00110010 00110000 00110011 00110010 0 00110101 00111000 00111000 01100100 0	00110010 01100010 01100001 00111001	
AMF Decode			00110011 01100101		
AMF Encode	***		RHC 341 = 1	Tr Raw Bytes 🗧	با LF
BSON deserialise			Output		::
BSON serialise			Flag: bb07ef031662110c3c20322b588da93	3e	
C B OR Decode					
C B OR Encode					
From B CD	-	_			
From MessagePack	STEP B.	AKE! Auto Bake			

Textul în binar se copiază în câmpul Input.
În Operations se caută funcția From Binary. Drag and drop în câmpul Recipe.
În câmpul Output va apărea flag-ul căutat.

Flag: bb07ef031662110c3c20322b588da93e

There is more

Categorie: Steganografie

Descriere:

Încearcă să găsești flag-ul ascuns în imagine. Extrageți datele necesare și veți obține ceea ce căutați.

Task:

Poți extrage metadatele și să găsești flag-ul?

Timp rezolvare: 5 min

Link descărcare:

https://files.stscloud.ro/s/knkNnJ3Zpe3R8Dc

Parola:

Parola_more1

There is more

Numele provocării, descrierea și chiar conținutul imaginii (unde cuvântul "metadata" este evidențiat) sugerează clar că atenția trebuie îndreptată către metadatele fișierului, nu către imaginea în sine.

Metadatele unei poze sunt informații ascunse în fișierul imaginii, cum ar fi data realizării, modelul camerei, locația GPS sau comentarii adăugate. Acestea nu sunt vizibile direct, dar pot fi extrase cu unelte speciale precum **exiftool**, un instrument foarte util disponibil în Kali Linux.

Pași:

- Ne mutăm în terminal în directorul unde se află imaginea.
- Rulăm comanda:
 - exiftool there_is_more.png
- Verificăm informațiile afișate și se observă că flag-ul căutat este în câmpul

Image Description

<pre>[kali@kali)-[~/Desktop/CTF] [t]</pre>	
total 372	
-r-xr-xr-x 1 kali kali 380499 S	ep 20 2022 there_is_more.png
<pre>(kali@ kali)-[~/Desktop/CTF] \$ exiftool there_is_more.png Exiftool Version Number File Name Directory File Size File Modification Date/Time File Access Date/Time File Inode Change Date/Time File Type File Type File Type Image Height Bit Depth Color Type Compression Filter</pre>	<pre>: 13.00 : there_is_more.png : . : 380 kB : 2022:09:20 10:08:56-04:00 : 2025:06:16 03:20:17-04:00 : 2025:06:16 03:20:17-04:00 : -r-xr-xr-x PNG : png : image/png : agg/png : 895 : 505 : 8 : 866 with Alpha : Deflate/Inflate : Adaptive</pre>
Interlace	: Noninterlaced
Warning	: [minor] Text/EXIF chunk(s) found after PNG IDAT (may be
ignored by some readers)	
Exif Byte Order	: Big-endian (Motorola, MM)
Image Description	: Flag: 15D6DE33A771B23E928FEA242ACC1F75
Resolution Unit	: inches
Y Cb Cr Positioning	: Centered
Image Size	: 895×505
Megapixels	: 0.452
[<mark>kali⊛kal</mark> i)-[~/Desktop/CTF] _\$ ∎	

Flag: 15D6DE33A771B23E928FEA242ACC1F75

Text matters

Categorie: Steganografie

Descriere:

Încearcă să găsești flag-ul ascuns în imagine. Țineți cont de toate informațiile și veți obține ceea ce căutați.

Task:

Un tool cunoscut a fost folosit pentru a ascunde un mesaj. Crezi că îl poți găsi?

Timp rezolvare: 5 min

Link descărcare:

https://files.stscloud.ro/s/wX89tHTooKoRJrA

Parola:

Parola_text1

Text matters

Imaginea conține textul "Keep looking...", iar descrierea sugerează că, folosind un tool cunoscut, un mesaj a fost ascuns în fișierul imagine. Indiciul din titlu lasă de înțeles că textul are o importanță aparte – "textul contează".

Steghide este un instrument popular și puternic folosit pentru a ascunde date (texte, fișiere) în fișiere multimedia, în special în imagini și fișiere audio. Acesta ascunde informația în mod discret, modificând cel mai puțin vizibil bitii fișierului gazdă, astfel încât modificările să fie aproape imposibil de detectat cu ochiul liber.

Indiciul ne sugerează că asupra imaginii s-a folosit steghide, așa că putem încerca să extragem datele ascunse cu același tool.

Numele fișierului, "text_matters", ne dă de înțeles că textul din imagine este important și, foarte probabil, parola pentru extragere este chiar textul vizibil ("Keep looking...").

Tot ce rămâne este să testăm această parolă folosind comanda steghide extract până reușim să scoatem conținutul ascuns cu succes.

(kali@kali)-[~/Desktop/CTF]
_\$ steghide extract -sf text_matters.jpg -p Keeplooking...
wrote extracted data to "secret.txt".

Flag: 9435ABC2ACF24086C3128DE687182DE0

#4

2 IN 1

Categorie: Crypto

Descriere:

Flag-ul este în fișierul 2in1.txt, încearcă să îi obții.

Task:

Reușești să decodifici mesajul ascuns prin mai multe niveluri de codificare?

Timp rezolvare: 5 min

Link descărcare:

https://files.stscloud.ro/s/SQTQ8rLzPqKj8aC

Parola:

Parola_2_in_1

2 IN 1

Textul conține grupuri de câte două caractere (ex: 52, 6d, 78), fiecare fiind un număr hexazecimal (O-9, a-f). Aceasta indică faptul că datele sunt codificate în format hexazecimal.

Hexazecimalele nu sunt de obicei separate prin "+", ci prin spațiu, fără spațiu sau cu prefixul "\x". Așadar, primul pas este să înlocuim toate semnele "+" cu spațiu, pentru a obține un șir continuu de hexazecimale.

Folosind CyberChef sau un alt tool, aplicăm operația From Hex pentru a converti șirul hexazecimal într-un text ASCII.

După decodare, obținem un șir ce pare a fi în format Base64.

Aplicăm operația From Base64 în CyberChef pentru a obține textul clar.

Folosim funcția **Find / Replace** din CyberChef pentru a înlocui toate semnele "+" cu spațiu.

+ 🗅 🕣 🧰 📰 Recipe ^ B 🖿 î Operations Input 52+6d+78+68+5a+7a+6f+67+4d+6a+68+46+52+6a+63+32+51+54+56+46+4e+44+64+43+4d+4 from he Find / Replace ^ () II 4+41+7a+4e+45+46+46+4e+45+51+35+4f+54+4e+42+4d+7a+45+35+52+54+64+44+4d+7a+51 +4b From HTML Entity Find SIMPLE STRING * + From Hex Replace From Hexdump From Hex Content Global match Case insensitive From Modhex Multiline matching Dot matches all From Charcode mme 155 📻 1 Tr Raw Bytes ↔ CRLF (detected) Favourites * Output 🎉 80.00 Data format 52 6d 78 68 5a 7a 6f 67 4d 6a 68 46 52 6a 63 32 51 54 56 46 4e 44 64 43 4d 44 41 7a 4e 45 46 46 4e 45 51 35 4f 54 4e 42 4d 7a 45 35 52 54 64 44 4d 7a Encryption / Encoding 51 4b

SOLUȚIE

Operations	40	Recipe	^ 🖻 🖿 🗊	Input	+ •
from he		Find / Replace	^ ⊗ II	52+6d+78+68+5a+7a+6f+67+4d+6a+68+46+524	+6a+63+32+51+54+56+46+4e+44+64+43+4d+44+41+7a+4e+45+46 5x52x54x64x44x4dx72x51x4b
From HTML Entity		Find	SIMPLE STRING *		552154004444474752440
From Hex					
From Hexdump		Replace.	Global match		
From Hex Content		Case insensitive	Multiline matching		
From Modhex					
From Charcode		Dot matches all			
Favourites	*	From Hex	^ ⊙ II		
Data format		Delimiter		aat 155 🛒 1	Tt Row Bytes ← CRLF (detected,
Encryption / Encoding		Auto		Output 🎉	C 🗊 🗋
Public Key				RmxhZzogMjhFRjc2QTVFNDdCMDAzNEFFNEQ5OTM	NBMZE SRTdDMZQK
Arithmetic / Logic					

Următorul pas este să aplicăm funcția **From Hex** peste output-ul obținut anterior și va rezulta un string encodat in Base64.

SOLUȚIE

Operations	Recipe	^ 🖻 🖿 🕯	Input + 🗅 Ə 🗑 📰
from ba	Find / Replace	^ () II	52+6d+78+68+5a+7a+6f+67+4d+6a+68+46+52+6a+63+32+51+54+56+46+4a+44+64+43+4d+44+41+7a+4e+45+46 +46+4e+45+51+35+4f+54+4e+42+4d+7a+45+35+52+54+64+44+4d+7a+51+4b
From Base	Find +	SIMPLE STRING -	
From Base32	Replace		
From Base45	The prime.	Global match	
From Base58	Case insensitive	tiline matching	
From Base62			
From Base64	Dot matches all		
From Base85	From Hex	^ () II	
From Base92	Delimiter		and 155 🛒 1 Tr Rew Bytes 🛀 CRLF (detected)
From Binary	Auto		Output Dutput
From Braille	From Base64	^ () II	Flag: 28EF76A5E47B0034AE4D993A319E7C34
Fork	Alphabet A-Za-z0-9+/=		
To Base58	Romana ana alabahat shara	Christ mode	
Favourites 🖈	Memove non-alphabet chars	suici mode	

Aplicând și funcția **From Base64** peste output-ul obținut anterior va rezulta flag-ul căutat.

Flag: 28EF76A5E47B0034AE4D993A319E7C34

Spacedot

Categorie: Crypto

Descriere:

Fișierul spacedot.txt conține o secvență formată doar din spații și puncte. Încearcă să obții flag-ul.

Task:

Observi unde este ascuns flag-ul?

Timp rezolvare: 5 min

Link descărcare:

https://files.stscloud.ro/s/kbx3YwaT6faAoq3

Parola:

Parola_spacedot1

Spacedot

Putem observa că fișierul conține doar două simboluri: spațiu și punct, ceea ce sugerează o codificare binară ascunsă. Chiar dacă o căutare pe internet pentru "space dot encoding" nu oferă rezultate utile, putem deduce că:

- punctul (.) poate fi considerat ca 1
- spațiul () poate fi considerat ca O

Pentru a face conversia, putem folosi tool-ul CyberChef:

- Căutăm funcția **Replace** în coloana din stânga.
- O aplicăm de două ori:
 - ∘ Prima dată: (.) →1
 - A doua oară: () → 0
- Atenție selectați tipul "Simple String" și nu "Regex", deoarece punctul (.) este caracter special în expresiile regulate și înlocuirea poate eșua.

După înlocuire, folosim funcția **From Binary** pentru a transforma șirul de biți în text **ASCII**, unde flag-ul devine vizibil.

Folosim funcția **Find / Replace** din CyberChef pentru a înlocui (.) cu 1 și () cu 0. Obținem astfel un șir de biți, pe care îi vom transforma în ASCII.

Flag: 5BCE77980D58261EF03F47BFCCB4A67E

SOLUȚIE

Correct String

Categorie: Reverse

Descriere:

Flag-ul este ascuns în codul din fișier, dar este plin și cu multiple flag-uri incorecte. Provocarea este să identifici și să extragi flag-ul real dintre toate informațiile false folosind indiciile prezente.

Task:

Care este flag-ul corect?

Timp rezolvare: 10 min

Link descărcare:

https://files.stscloud.ro/s/H8oqNr2LEXqkmgd

Parola:

Parola_corect1

SOLUȚIE

Correct String

Din titlul challenge-ului, **"Correct String**", deducem că flag-ul poate fi găsit folosind comanda **strings**, care extrage toate șirurile de caractere lizibile dintr-un fișier binar. Astfel, putem scăpa rapid de datele binare și de falsurile care nu sunt stringuri clare și să căutăm flag-ul real printre rezultatele afișate.

La o primă vedere, prezența șirului "**UPX**!" în output-ul comenzii strings indică faptul că executabilul este impachetat cu **UPX**. Aceasta împiedică accesul direct la codul real și, implicit, la flag.

Packerele sunt programe sau utilitare care comprimă sau criptează un fișier executabil pentru a-i reduce dimensiunea sau pentru a-i ascunde conținutul real. În contextul securității cibernetice, packerele sunt folosite adesea pentru a împiedica analiza codului de către tool-uri automate de securitate precum Antiviruși sau Firewall, mascând structura internă a programului.

Pentru a putea analiza fișierul și a căuta flag-ul, trebuie mai întâi să despachetăm executabilul folosind comanda: **upx -d <nume_executabil>**

După despachetare, putem folosi din nou comanda strings pentru a extrage toate șirurile lizibile și a identifica flag-ul corect.

SOLUȚIE

(root@DESKTOP-DDVAOUP)-[/home/kali]
strings correctString | more
4UPX!4
iYa/
/PB_
8/h]
X/0GP
H/ '
WAPRH
D24!
)ARVAUATUS
[]A\A

(root@DESKTOP-DDVAOUP)-[/home/kali]
strings correctString | grep UPX
4UPX!4
\$Info: This file is packed with the UPX executable packer http://upx.sf.net \$
\$Id: UPX 3.94 Copyright (C) 1996-2017 the UPX Team. All Rights Reserved. \$
UPX!u
UPX!
UPX!

Se observă faptul că fișierul a fost obfuscat folosind packer-ul **UPX**, astfel că vom folosi utilitarul **upx** prezent în **Kali Linux** pentru a obține codul sursă real.

SOLUȚIE

	Ū	ltimate Pa	acker for eXecu	utables	
JPX 4.2.2	Markus C	berhumer,	Laszlo Molnar	& John Reiser	Jan 3rd 2024
File	size	Ratio	Format	Name	
846090 <	- 332408	39.29%	linux/amd64	correctString	

Folosind comanda **upx -d correctString** a fost despachetat codul sursă, iar folosing din nou comanda **strings** putem observa că acesta pare să fie în forma corectă și inteligibilă.

<pre>(root @ DESKTOP-DDVAOUP)-[/home/kali] # strings correctString more</pre>	
5,.	
WAPRH	
AWAVAUATUSH	
[]A\A]A^A_	
u'UH	
Flag: isI	
not herL	
PasswordH	
is 1234H	
567890!	
Packers H	
gona pacH	

Cautăm cuvântul cheie **Flag** în tot fișierul și observăm că apare în mai multe locuri, deci este posibil ca flag-ul să se afle pe următoarele linii.

(kali@kali)-[~/Desktop/CTF] \$ strings correctString -n 8 | grep -i flag Plag: miH \$[flag iH WARNING: Unsupported flag value(s) of 0x%x in DT_FLACS_1. s→_flags2 & 10 FLACS2_FORTIFY version = NULL || (flags & ~(DL_LOOKUP_ADD_DEPENDENCY | DL_LOOKUP_GSCOPE_LOCK)) = 0 imap→1_type = lt_loaded & (imap→1_flags_1 & DF_1_NODELETE) = 0 _dl_x86_hwcap_flags _dl_stack_flags

Se modifică comanda de mai sus, adaugând opțiunea **-A 10** pentru comanda **grep**, pentru a afișa și următoarele 10 rânduri după fiecare apariție a cuvantului cheie **Flag**.

(kali@kali)-[~/Desktop/CTF]
strings correctString -n 8 grep -i flag -A 10
Flag: isI
not herL
PasswordH
is 1234H
Packers H
gona pacH
01010101H
11110101H
01010010H
1000000H
00111100H
Flag: miH
char pasH
s[flag iH
466c6167H
3a203039H
43384538H
37443131H
33303945H
37323631H
37383133H
30383038H
38314545
SysfaultH
WARNING: Unsupported flag value(s) of 0x%x in DT_FLAGS_1.
setup_vdso
elf_get_dynamic_info
AVX512CD
AVX512BW
AVX512DQ
AVX512EK
AVA_OSABLE
$S \rightarrow _1 (u_S^2 S^2 \circ _1 \circ _$
(unsigned int) done < (unsigned int) INT MAY
(size t) done < (size t) INT MAX
the segment detected the
printf positional
priner_posicional

SOLUȚIE

+ 🗅 🗩 🛢 📰 Recipe ^ 🖬 🖿 Input Operations Î 01010101 binar From Binary ^ () II 11110101 01010010 To Binary Delimiter Space Byte Length 10000000 8 From Binary AMF Decode AMF Encode BSON deserialise Tr Raw Bytes ↔ CRLF (detected) eec 38 = 4 **B**SON serialise ១៣៣០ Output CBOR Decode UōR•

Încercăm să decodăm toate șirurile obținute. Din primul nu se obține nimic relevant.

Dar folosind al doilea șir identificat se obține flag-ul căutat.

Operations 46	Recipe	^ 🗃 🖿 📋 Input	+ 🗅 🖯 🕯 🖬
hex	From Hex	∧ ⊗ II 466c6167 3a203039	
To Hex	Delimiter	43384538 37443131	
From Hex		33303945 37323631	
Hex to PEM		37383133 30383038	
PEM to Hex		3831	
To Hex dump		aac 84 =	9 Tr Raw Bytes 🔶 CRLF (detected)
From Hex dump		Output	B 🗇 🖬 🗆
To Hex Content		Flag: 09	C8E87D11309E72617813080881

#6

SOLUȚIE

www.sts.ro IULIE 2025