BANCA DE SUBIECTE PENTRU PROGRAMUL DE STUDII INFORMATICA IN LIMBA ENGLEZA

			Anul I
Nr. crt.	Categoria	Plan invățământ site	Subiecte
	formativă		
1.	DC	Mathematical Analysis	1. Infimum and Supremum: definition, examples, characterization by
			sequences.
			2. Countable sets: definition, examples. Z and Q are countable sets (proof)
			3. Convergent sequences, Cauchy sequences. Definition, examples and counterexamples.
			4. Stolz-Cesaro lemma and consequences. (proof+applications)
			5. Metric spaces (definition, examples). Convergent sequences in metric
			spaces
			6. Existence of the limit of a real function at a point. Definition,
			characterization by sequences. Examples
			7. Continuous functions. Definition, examples.
			8. Differentiable functions. Definition, examples. Connection with
			continuous functions
			9. Numerical series. Definition of series's convergence, examples.
			10. Generalized harmonic series (proof for convergence+applications)
			11. Taylor series. MacLaurin series. Definition, applications.
2.	DF	Data Structures	Data Structures
			 One-dimensional and two-dimensional vectors: definition, operations, practical use example Singly linked list: definition, operations of adding, traversing, deleting elements

			 Doubly linked list: definition, operations of adding, traversing, deleting elements Binary search trees: definition, traversing, searching in trees Binary trees associated with an arithmetic expression: generation, example of use
3.	DF	Fundamentals of	Fundamentals of programming
		Programming	
			1. Operators in C language (types, semantics, precedence and associativity
			rules, examples).
			2. Decisional instructions in C language (syntax, semantics, examples).
			3. Repetitive instructions in C language (syntax, semantics, examples).
			4. User-defined functions in C language (declaration, implementation, call,
			parameter transfer, functions with simple parameters/data arrays).
			5. Data arrays (arrays) in C language (declaration, initialization, accessing
			elements, sending as parameters in functions).
			6. Fundamental algorithms for working with data arrays, implemented in C
			language (inding minimum/maximum, number of occurrences of an
			sorting).
			7. Pointers (definition, declaration, initialization, connection between
			pointers and arrays/data arrays, functions with pointer parameters).
			8. Dynamic memory management (heap) in the C language (specific
			functions, examples).
			9. Structures in the C language (definition, declaration, accessing the fields
			of a structure, nested structures, arrays of structures).
			10. Functions with structures (functions that receive a structure parameter,
			functions that return structures, functions with pointers to structures
			parameters).

4.	DC	Linear Algebra	Linear Algebra
			 Determinant of a matrix: definition, fundamental properties. Inverse of a matrix: definition, existence and uniqueness, adjoint matrix method and Gauss-Jordan method for computing the inverse matrix. Vector spaces: definition, examples, fundamental properties. Vector subspace: definition, examples, subspace criteria. Basis of a finitely generated vector space. Coordinates of a vector in a given basis of the space. Dimension of a vector space. Linear transformations: definition, examples, fundamental properties, matrix associated with a linear transformation. Kernel and image of a linear transformation: definitions, properties, relationship between dimensions (Rank-Defect Theorem). Eigenvalues and eigenvectors: definition, properties. Diagonalization of a matrix: criteria for diagonalizability. Positive definite matrices, positive definite quadratic forms: definition, examples, fundamental properties.
5.	DF	Computer Architectures	Computer Architectures
			1. The virtual layers of a computing system (abstraction, layering, virtual machine, characteristics of each layer)
			2. Central processing unit (CPU): components, characteristics, registers, instruction cycle, segmentation (general, case study: Intel 8086 CPU).
			3. Computer memory system: types, characteristics, locality of memory references, levels
			4. Cache memory: characteristics, cache mapping techniques (definition, examples)
			5. IA-32 Architecture: operating mode, registers, segmentation model, translating addresses (without paging)

			6. Basics of Virtual Memory (VM): characteristics, dynamic address
			translation, fast address translation, page replacement
			7. IA-32 memory model: segmentation, virtual memory, translating
			addresses
			8. CISC and RISC architectures (main features, advantages and
			disadvantages)
			9. Pipelining: basic idea, performance, hazards (definitions, examples).
			10. Parallelism in computing systems: categories of flows, Flynn's taxonomy
			(definition, examples, analogies)
6.	DF	Differential and Integral	Differential and Integral Calculus
		Calculus	
			1. Fréchet differential of a real valued function of several real variables -
			definition, properties, examples.
			2. Directional derivatives of a real valued function of several real variables.
			Partial derivatives.
			3. Differentiation of composite functions of several real variables. Partial
			derivatives of composite functions. The chain rule.
			4. Higher-order partial derivatives. Schwarz's symmetry theorem.
			5. Higher-order differentials for functions of several real variables.
			Taylor's Formula.
			6. Local extrema of functions of several real variables.
			7. Conditional extrema of functions of several real variables.
			8. Line integrals of the first kind (scalar line integrals)- definition,
			properties, examples.
			9. Line integrals of the second kind (line integrals of vector fields) -
			10 Double integrale definition management in observe of verificities even and
7	DE	Eundomontal Algorithma	To. Double integrals - definition, properties, change of variables, examples.
/.	Dr	r unuamentai Aigorithms	r unuamentai aigoritinms

			 Fundamental algorithms: processing the digits of a number, prime numbers, inversion Selection and insertion sort algorithms: description of algorithms, analysis of their efficiency Sorting algorithms by interleaving and pivoting: description of algorithms, analysis of their efficiency Search algorithms: sequential search and binary search Algorithms for searching for substrings of characters
8.	DF	Algebraical	1. Lattices: Definition, properties, examples.
		Fundamentals of	2. Groups: Definition, properties, examples.
		Informatics	3. Subgroups: Definition, properties, examples.
			4. Subgroups of the group $(\mathbb{Z}, +)$.
			5. The order of an element in a finite group. Application: Determine the
			subgroups of the group (\mathbb{Z}_{18} , +) and the orders of its elements.
			6. Rings: Definition, properties, examples.
			7. Invertible elements in a ring. Zero divisors. Application: Determine the
			invertible elements and the zero divisors in the ring (\mathbb{Z}_{20} , +, *). What do
			you observe?
			8. Euclid's Algorithm. Application: Determine the inverse of the element
			15 in the ring (\mathbb{Z}_{1372} , +, *) using Euclid's algorithm.
			9. Chinese Remainder Theorem. Application: Using the Chinese
			Remainder Theorem, find the solutions to the system:
			$x \equiv 7 \mod 8,$
			$x \equiv 6 \mod 9$,
			$x \equiv 3 \mod 11$.
			10. Affine Cipher. Application: Using the affine cipher with the key $(7, 10)$,
			encrypt the message "LICENTA", knowing that a 27-letter alphabet is

			used (the regular alphabet without diacritics plus the last symbol as a
			space). The operations are performed in $(\mathbb{Z}_{27}, +, *)$. Find the decryption
			key.
9.	DC	Analytical and	1. Geometric transformations (analytic equations): Translations,
		Differential Geometry	symmetries, rotations, orthogonal transformations, isometries.
			Homotheties and inversions.
			2. Circle, ellipse, hyperbola, parabola: Common definition of conics.
			Optical properties. Reduction of conics to canonical form.
			3. Vectors in space: Vector product. Cartesian frame. Coordinate system in
			space. Line and plane in space. Analytic equations.
			4. Distance from a point to a plane. Volume of a tetrahedron. Geometric
			transformations in space.
			5. Sphere, ellipsoid, hyperboloids, paraboloids: Reduction of quadrics to
			canonical form. Intersection of the cone with planes.
10.	DS	Object Oriented	Object oriented programming I
		Programming I	1. Basic elements of object-oriented programming: classes, objects,
			variables, methods
			2. The inheritance mechanism in object-oriented languages
			3. Implementing the polymorphism property in Java
			4. Abstract classes
			5. Interfaces. Multiple inheritance
			6. Building graphical user interfaces in Java
			7. Event management in Java
			8. Managing object collections in Java
			9. Reading data in Java
			10. Writing data in Java
Anul II			
Nr. crt.	Categoria	Plan invățământ site	Subiecte
	formativă		

1.	DF	Graphs Algorithms	GRAPHS ALGORITHMS
			 Algorithms for determining strongly connected components (description of an algorithm).
			2. Algorithms for determining minimum paths (description of an algorithm).
			3. Maximum flow in networks. Ford-Fulkerson algorithm.
			4. Trees. Equivalent definitions. Prim algorithm (description)
			5. Tree traversal. Infix, prefix, postfix forms. Partial minimum cost tree (description of an algorithm).
2.	DF	Operating Systems	Operating systems
			 Processes: process definition, process creation, the process image/memory layout, user vs kernel split. Process states and transitions: 5-state and 7-state transition diagram, process exit statuses, the Process Control Block (PCB). Process hierarchies in Linux: system calls for forking and process image replacement, orphan and zombie processes Process and CPU isolation and protection: isolation mechanisms, context switches, handling system calls. Interprocess communication mechanisms: signals, pipes, message queues, shared memory. Thread synchronization using mutex locks: variants, mutex lock-based solutions for synchronization problems. Thread synchronization using semaphores: variants, semaphore-based
			 8. CPU scheduling algorithms: enumeration, description, the concept of preemption, example application of the algorithms on a process queue, waiting and turnaround times.

			9. Virtual memory management: page replacement algorithms, algorithm
			comparison on a reference string, Bélády's anomaly.
			10. The buddy system kernel memory allocation algorithm:
			flowchart/pseudocode, example, buddy address calculation
3.	DF	Formal Languages and	Formal Languages and Compilers
		Compilers	
			1. Demonstrate the equivalence between non-deterministic and deterministic
			finite automata.
			2. State and prove the pumping lemma for regular languages.
			3. Prove that the language $L = \{ww w \in \{a, b\}^*\}$ is not a regular language.
			4. State and prove the pumping lemma for context-free languages and show
			that the language $L = \{a^{2^n} n \ge 0\}$ is not context-free.
			5. Consider the context-free grammar G:
			$S \rightarrow AB$
			$S \rightarrow BC$
			$A \rightarrow BA$
			$A \rightarrow a$
			$B \rightarrow CC$
			$B \rightarrow b$
			$C \rightarrow AB$
			$C \rightarrow a$
			and the string $w =$ baaba. Show using the CYK algorithm that $w \in L(G)$. Construct a derivation tree for w.

			-start 1 b a,b 6 a,b a,b a,b 3 a 5 5
4.	DF	Mathematical and	Mathematical and Computational Logic
		Computational Logic	1. Conjunctive normal form of a formula in propositional logic.
			2. Disjunctive normal form of a formula in propositional logic.
			3. An algorithm for minimizing conjunctive normal form.
			4. Skolem normal form. Example. Normalization algorithm.
			5. Predicate calculus: alphabet, terms, formulas, axioms, deduction rules.
			Examples.
5.	DF	Computational Geometry	Computational geometry
			1 2SUM algorithm
			 SOM algorithm Localization in the partition induced by a triangle
			3 Localization in the partition induced by a simple polygon
			 Localization in the partition induced by a simple polygon Localization in the partition induced by a convex polygon
			5. Localization in the partition induced by a PSLG – slabs method
			6. Localization in the partition induced by a PSLG – chains method
			7. Limitation problems
			8. 2D tree
			9. Convex Hull – Graham algorithm
			10. Convex Hull – Jarvis algorithm

6.	DC	Differential and Partial	Differential and Partial Differential Equations
		Differential Equations	1. Separable Differential Equations.
			2. Bernoulli Differential Equations.
			3. Lagrange and Clairaut Differential Equations.
			4. Exact Differential Equations. Integrating Factors.
			5. Linear n th Order Differential Equations with Constant Coefficients.
7.	DS	Probability Theory and	Probability Theory and Elements of Mathematical Statistics
		Elements of	
		Mathematical Statistics	1. Probability: definitions, properties, types of probability
			2. Conditional probability: definition, conditional multiplication formula, example
			3. Conditional probability: definition, formula of total probability, Bayes
			formula, example
			4. Independence of random events: definition, properties, example
			5. Classical probability schemes: Poisson's scheme, examples
			6. Expected value of a random variable: definition, properties, example
			7. Variance of a random variable: definition, properties, example
			8. Histogram: definition, types, examples
			9. Location parameters in descriptive statistics: definitions, examples
			10. Spread parameters in descriptive statistics: definitions, examples
8.	DS	Numerical Analysis	Numerical Analysis
			1. Bernstein Approximation Polynomials (definition, properties, examples)
			2. Lagrange Interpolation Polynomials (definition, properties, examples)
			3. Quadrature Formulas. Trapezoidal Rule (definition, properties, composite
			trapezoidal rule, examples)
			4. Quadrature Formulas. Simpson Rule (definition, properties, composite
			Simpson rule, examples)

			5. Pivoting Techniques for Direct Methods of Solving Square Linear
			Systems (definition, how the Gaussian Elimination algorithm is modified
			and its time complexity, examples)
9.	DF	Databases	Databases
10	DS	Web Technologies	 Entity Relationship Data Model (classical elements, extensions, modelling traps; examples). Primitive constraints in the Relational Data Model (definition for the 5 types of primitive constraints; the algorithm for the calculation of keys of a relation; practical examples). Translation of ERD schemes into RDM (algorithm; types of anomalies; complex examples). Normal forms (1NF, 2NF, 3NF; types of anomalies; examples). SQL SELECT statement: SELECT, FROM clauses, JOIN OPERATIONS (syntax, semantics, examples). SQL SELECT statement: WHERE clause; NULL values, SQL String operations, BETWEENAND operator, IN/NOT IN operator (syntax, semantics, examples). SQL SELECT statement: aggregation functions; GROUP BY, HAVING clauses; examples. Subqueries in the SQL SELECT statement (subqueries in SELECT, FROM, WHERE, HAVING; ANY/ALL/SOME keywords; IN/NOT IN, EXISTS/NOT EXISTS; examples). SQL Data Definition Language statements (INSERT, UPDATE, DELETE; subqueries in the WHERE clause; examples).
101			The company of the

			1. Essential elements of HTML
			2. Superset of CSS
			3. Grid in CSS
			4. Flexbox in CSS
			5. Javascript Object Notation versus XML
			6. Javascript objects
			7. Javascript functions
			8. Storage in browser
			9. Extensions in Javascript
			10. AJAX technology
11.	DS	Object Oriented	Object oriented programming II
		Programming II	
			1. Swing tables management
			2. Swing trees management
			3. Functional interfaces. Using functional interfaces in writing element
			flows
			4. Programming threads in Java
			5. Programming databases in Java
Anul III	I	1	
Nr. Crt.	Categoria	Plan invățământ site	Subiecte
	formativă		
1.	DS	Databases Management	Databases Management Systems
		Systems	
			1. Concurrency management in a relational DBMS: transactions
			(definition, ACID properties), conflicting operations (definition),
			conflict-serializable schedules (definition), locks (definition,
			classification), 2PL and Strict-2PL protocols (definition, examples)

			2. Query optimization in a relational DBMS: Join operator implementation
			techniques (features, cost, examples), general indexing rules in relation
			to the JOIN operator
			3. Data recovery in a relational DBMS: failure types, recovery strategies,
			UNDO/REDO operations, rules for writing the transaction log, the
			WARM RESTART algorithm (steps, examples).
			4. Methods of accessing records (classification, examples) and the main
			indexing structures (classification, characteristics) in a relational DBMS
			5. Query optimization in a relational DBMS: general indexing rules, index
			function, IOT, indexing in relation to WHERE and ORDER BY clauses,
			DML statements (characteristics and examples).
2.	DF	Computer Networks	Computer Networks
			1. OSI and TCP/IP Reference Models
			2. TCP/IP Protocol Suite
			3. Data Link Layer Switching
			4. IPv4 and IPv6 Logical Addressing
			5. IP Address Sub-Allocation (Subnetting)
			6. VLSM (Variable Length Subnet Mask) Method
			7. Static Routing in IP Networks
			8. Dynamic Routing based on Distance Vectors – RIP Protocol
			9. Network Communication through Sockets (Client-Server TCP, Client-
			Server UDP - Python Applications)
			10. HTTPS Protocol: Authenticating a Site Through a Certificate
3.	DS	Advanced Programming	1. Define the concept of Binding Source at the level of a connection with a
		Techniques	database. Provide a relevant example.
			2. Define how the connection to the database is established. Example: C#
			connection to an MS Access database.
			3. Describe how you can access/modify multimedia elements in an MS
			Access database. Example: accessing an image from a database field.

			4. Define a database structure using multimedia-type fields. Relevant
			example describing the properties of an image-type field.
			5. Describe how visual controls can be defined in MS Access. Example:
			button control and setting visibility in the application.
			6. Define the association table. Create relationships between many-to-
			many tables. Example: using an association table.
			7. Accessing tables from a password-protected database.
			8. Handling errors in the programming language that accesses the database.
			Example.
			9. Define the concept of validation through referential integrity in a
			database. Example using integrity access from the C# programming
			language.
			10. Define the concept of constraint in a database. C# example that applies
			the constraint on table records.
4	DF	Artifficial Intelligence	Artificial Intelligence
		8	8
			 Intelligent Agents (Agent Definition, PEAS Description, Agent Types)
			 Intelligent Agents (Agent Definition, PEAS Description, Agent Types) State-Based Models for Search Problems (State, Search Space,
···			 Intelligent Agents (Agent Definition, PEAS Description, Agent Types) State-Based Models for Search Problems (State, Search Space, Transitions Between States, Search Algorithm; Practical Examples).
			 Intelligent Agents (Agent Definition, PEAS Description, Agent Types) State-Based Models for Search Problems (State, Search Space, Transitions Between States, Search Algorithm; Practical Examples). Uninformed Search Methods (Depth-First Search (DFS), Breadth-First
			 Intelligent Agents (Agent Definition, PEAS Description, Agent Types) State-Based Models for Search Problems (State, Search Space, Transitions Between States, Search Algorithm; Practical Examples). Uninformed Search Methods (Depth-First Search (DFS), Breadth-First Search (BFS), Practical Examples).
			 Intelligent Agents (Agent Definition, PEAS Description, Agent Types) State-Based Models for Search Problems (State, Search Space, Transitions Between States, Search Algorithm; Practical Examples). Uninformed Search Methods (Depth-First Search (DFS), Breadth-First Search (BFS), Practical Examples). Informed Search Methods (Greedy Best First Search, A* Search;
			 Intelligent Agents (Agent Definition, PEAS Description, Agent Types) State-Based Models for Search Problems (State, Search Space, Transitions Between States, Search Algorithm; Practical Examples). Uninformed Search Methods (Depth-First Search (DFS), Breadth-First Search (BFS), Practical Examples). Informed Search Methods (Greedy Best First Search, A* Search; Practical Examples).
			 Intelligent Agents (Agent Definition, PEAS Description, Agent Types) State-Based Models for Search Problems (State, Search Space, Transitions Between States, Search Algorithm; Practical Examples). Uninformed Search Methods (Depth-First Search (DFS), Breadth-First Search (BFS), Practical Examples). Informed Search Methods (Greedy Best First Search, A* Search; Practical Examples). Constraint Satisfaction Problems (Problem Formulation, Backtracking
			 Intelligent Agents (Agent Definition, PEAS Description, Agent Types) State-Based Models for Search Problems (State, Search Space, Transitions Between States, Search Algorithm; Practical Examples). Uninformed Search Methods (Depth-First Search (DFS), Breadth-First Search (BFS), Practical Examples). Informed Search Methods (Greedy Best First Search, A* Search; Practical Examples). Constraint Satisfaction Problems (Problem Formulation, Backtracking for CSP, Heuristics for CSP (MRV, MCV, LCV); Examples)
			 Intelligent Agents (Agent Definition, PEAS Description, Agent Types) State-Based Models for Search Problems (State, Search Space, Transitions Between States, Search Algorithm; Practical Examples). Uninformed Search Methods (Depth-First Search (DFS), Breadth-First Search (BFS), Practical Examples). Informed Search Methods (Greedy Best First Search, A* Search; Practical Examples). Constraint Satisfaction Problems (Problem Formulation, Backtracking for CSP, Heuristics for CSP (MRV, MCV, LCV); Examples) Heuristic Local Search Algorithms (Hillclimbing, Simulated Annealing;
			 Intelligent Agents (Agent Definition, PEAS Description, Agent Types) State-Based Models for Search Problems (State, Search Space, Transitions Between States, Search Algorithm; Practical Examples). Uninformed Search Methods (Depth-First Search (DFS), Breadth-First Search (BFS), Practical Examples). Informed Search Methods (Greedy Best First Search, A* Search; Practical Examples). Constraint Satisfaction Problems (Problem Formulation, Backtracking for CSP, Heuristics for CSP (MRV, MCV, LCV); Examples) Heuristic Local Search Algorithms (Hillclimbing, Simulated Annealing; Practical Examples).
			 Intelligent Agents (Agent Definition, PEAS Description, Agent Types) State-Based Models for Search Problems (State, Search Space, Transitions Between States, Search Algorithm; Practical Examples). Uninformed Search Methods (Depth-First Search (DFS), Breadth-First Search (BFS), Practical Examples). Informed Search Methods (Greedy Best First Search, A* Search; Practical Examples). Constraint Satisfaction Problems (Problem Formulation, Backtracking for CSP, Heuristics for CSP (MRV, MCV, LCV); Examples) Heuristic Local Search Algorithms (Hillclimbing, Simulated Annealing; Practical Examples). Genetic Algorithms (Terminology, General Algorithm Schema,

			8. Genetic Algorithms (Solution Encoding/Representation, Fitness
			Function; Practical Examples).
			9. Genetic algorithms (Genetic operators (mutation/crossover) for different
			types of solution representations; practical examples).
			10. Particle Swarm Optimization metaheuristics (terminology, algorithm
			elements, pseudocode; practical example).
5.	DS	Optimization Techniques	Optimization Techniques
			1. Simple and multiple, univariate and bivariate regression
			2. TF-IDF scheme for search engines
			3. Activation functions for artificial neural networks (ANNs) and forward
			propagation mechanism
			4. Backpropagation mechanism in artificial neural networks
			5. Artificial neural networks (ANNs) for modeling logic operators NOT,
			AND, OR, and XNOR
6.	DS	Computer Graphics	Computer graphics
			1. Geometric transformations - translation / scaling / rotation around an Ox
			axis (Oy or Oz)
			2. Color representation systems - RGB / CMY / HSV / HLS
			3. Shading models - constant / Gouraud / Phong
			4. Lighting methods - ambient / diffuse reflection / specular reflection
			5. Animation techniques - key-frames / interpolation
7.	DS	Web Application	Web application development
		Development	
			1. Rounting in web applications
			2. MVC architectures in web applications development
			3. Object-Relational Mapping in ASP.NET Core
			4. Design patterns in web applications development

			5. Model binding in ASP.NET Core
			6. Containerization of web applications
			7. Middleware in ASP.NET Core
			8. Securing web applications
			9. HTTP transactions
			10. Dynamic forms in Asp.Net Core
8.	DS	Scientific Computing	Scientific Computing Algorithms (Pattern Recognition)
		Algorithms (Pattern	
		Recognition)	1. NN and k-NN algorithms for face recognition
			2. Eigenfaces algorithm for face recognition
			3. Tensors. Data manipulation (folding and unfolding tensors)
			4. k-means clustering algorithm (2 variants)
			5. Convolutional neural networks (CNNs): components, various
			architectures, forward propagation
			6. Performance metrics for classification problems in supervised learning
9.	DS	Design and Programming	1. Define Resources, events, agents in the context of REA modelling for
		Environments	bussiness processes.
			2. Define the REA extension the type concept. Exemplify.
			3. Define the cardinalities for association relations. Exemplify
			4. Define the REA extension - detail event concept. Exemplify through
			examples.
			5. Define the way to specify attributes of the concepts in the REA model.
			6. Define the database design using tables and attributes.
			7. The design and implementation of the concepts in the REA model
10.	DS	Networks Administration	1. Network attacks.
			2. Mitigation of network attacks.
			3. The Spanning Tree Protocol (STP) algorithm.
			4. The concept of Link Aggregation.
			5. The DHCP protocol and its associated DORA process.