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Bivariate FGM distribution with composite
Exponential-Pareto marginals for modeling insurance
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Abstract

Defined from different distributions on contiguous intervals, univariate two-
spliced distributions have been proposed with the purpose to better model ex-
treme events in the presence of a high frequency of small to medium data.
Therefore, a two-spliced or composite distribution generally combines a heavy-
tailed distribution above a threshold with a less heavy-tailed component below
it. Such distributions are intensively used in connection with insurance data,
the motivation of splicing being that “the tail behavior may be inconsistent with
the behavior of small losses” (Klugman et al., 2012). In this work, we pro-
pose a bivariate Farlie-Gumbel-Morgenstern (FGM) distribution with compos-
ite Exponential-Pareto marginals, with the purpose to capture extreme events
occurring in a bivariate setting. We present some properties of this bivariate
distribution and discuss an estimation procedure which takes into account the
fact that the marginal thresholds (where the Exponential changes to Pareto) are
unknown, The estimation procedure is illustrated on real data from insurance
consisting of bivariate claim costs collected from an auto insurance portfolio.
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Factor rings. The fundamental isomorphism theorem
for polynomial rings
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România

biancaliana99@yahoo.com

Abstract

First, we briefly present the stages of the construction of the ring of residual
classes modulo n, Zn. Then we will give the general construction of the factor
ring of a ring R with respect to an ideal I of it. Factor rings intervene in many
other important constructions in mathematics: the fields R and C, finite bodies.
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Some remarks regarding the localization of
Hutchinson-Barnsley fractals

Anghelina Bogdan

Doctoral School of Mathematics, Transylvania University of Bras,ov, România
bogdan.anghelina@unitbv.ro

Abstract

This work is concerned with some complementary results to the ones pre-
sented in On the localization of Hutchinson-Barnsley fractals, Chaos Solitons
Fractals, 173 (2023), 113-674. More precisely, to determine a cover for a given
iterated function system S = ((X, d), (fi)i∈{1,2,...n}), n ∈ N, the exact values of
the Lipschitz constants of the functions associated to the system are required.
In practice, this computation proves to be quite difficult. Due to this impedi-
ment, we show that, in fact, it is enough to replace the Lipschitz constants with
some values ci ∈ (0, 1), which verify d(fi(x), fi(y)) ≤ cid(x, y), for all x, y ∈ X
and i ∈ {1, 2, . . . , n}.

Some additional remarks regarding the computations and graphical repre-
sentations are provided.
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On Infinitesimal Variations of Submanifolds
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Abstract

The notions of infinitesimal variation and infinitesimal bending of an Eu-
clidean submanifold are introduced. The fundamental equations and the funda-
mental theorem of infinitesimal variations are recalled. The hypersurfaces case
and the infinitesimal rigidity are presented. We give some alternative proofs of
known results and also provide some new results.
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On an eigenvalue problem associated with the
(p, q)-Laplacian
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Abstract

Let Ω ⊂ RN , N ≥ 2, be a bounded domain with smooth boundary
∂Ω. Consider the following generalized Robin-Steklov eigenvalue problem
associated with the operator Au = −∆pu−∆qu{

Au+ ρ1(x) | u |p−2 u+ ρ2(x) | u |q−2 u = λα(x) | u |r−2 u, x ∈ Ω,
∂u
∂νA

+ γ1(x) | u |p−2 u+ γ2(x) | u |q−2 u = λβ(x) | u |r−2 u x ∈ ∂Ω,

(1)
where p, q, r ∈ (1,∞) with p < q, α, ρi ∈ L∞(Ω), β, γi ∈ L∞(∂Ω) are
nonnegative functions satisfying∫

Ω

α dx+

∫
∂Ω

β dσ > 0

and ∫
Ω

ρi dx+

∫
∂Ω

γi dσ > 0, i = 1, 2.

Under suitable assumptions, we provide the full description of the
spectrum of the above problem in four cases out of five and for the com-
plementary case, we obtain a subset of the corresponding spectra.
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On some applications of Kolmogorov mean
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Abstract The Kolmogorov mean, also known as quasi-arithmetic

mean or f-mean is a generalization of the regular mean using a function
verifying a number of requirements. It is a core concept for constructing
generalized entropies with new properties. The choice of the function leads
to particular results that may have interesting applications in Probability,
Statistics and other related fields. Starting with Renyi’s approach and
continuing with Jizba’s work in hybrid entropy we revisit the axiomatic
system with an emphasis on the relevant classes of functions that can be
used in the construction of Kolmogorov mean.
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Bounded Solutions of an Iterative Differential
Equation

KONYICSKA LILIANA

Department of Mathematics and Computer Science Technical University
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Abstract

In this paper ,we use Schauder and Banach fixed point theorems to
study the existence,uniqueness and stability of bounded nonhomogeneous
iterative functional differential equations of some form.
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Positive linear operators and systems of linear
equations

Gabriela-Denisa MOTRONEA

Technical University of Cluj-Napoca, Faculty of Automation and
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Abstract

This paper is regarding the Kantorovich modifications of linking
operators and the Stancu modifications of Bernstein operators. It presents
some definitions and properties regarding positive linear operators. In
the final, solving systems of linear equations with positive coefficients and
solutions to determine the limits of the iterates of the modified operators.
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An alternative framework to visualize the
properties of quaternion algebras using the

Cayley-Dickson process

Ana-Gabriela NECHIFOR (căs. MUHA)
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Constanţa, România
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Abstract

The Cayley-Dickson is an iterative process that gives us an alternative
framework to view the construction of quaternions and octonions over an
arbitrary field K. This process is used in connection with square matrix
representations of the Cayley-Dickson algebras and it implies an array
operation on square arrays distinct from matrix multiplication.

Applying the Cayley-Dickson process to the real numbers, it forms
gradually algebras over R with a conjugation involution. So, we obtain
that R produces C then H then O, eliminating by turn properties such as
order, commutativity, associativity from algebra R, fact that illustrates
the way how each of these algebras nests inside the next one. Using the
previous construction of new algebras from the old ones, we try to explore
their properties. Some of them already known are presented in this paper,
but the question remains still open.
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Some open problems in the theory of the
polynomial hyperrings

Anton Nuculović

University of Montenegro, Podgorica
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Abstract

The main aim of this presentation is the systematization of the pre-
vious results related to different classes of polynomial hyperrings and the
construction of the new classes.
We will try to answer the open questions: if there exists a strong distribu-
tive subclass of the multiplicative hyperrings used by R. Processi Ciampi
and R. Rota in their paper as a starting class over which it is possible to
construct multiplicative hyperring of polynomials, and also the question
of a contsruction of the Krasner hyperrings with identity, that satisfy the
conditions from the paper [5], such that these examples are different from
the classes constructed in [5] and [6].
Also, the aim is to construct new examples of polynomialy structured
hyper- rings that satisfy certain conditions. We will study under which
conditions we can apply Euclid’s division algorithm in hyperrings of poly-
nomials. In a case of the superring of polynomials, we will check whether
the analogue of Hilbert’s base theorem is valid, as well as whether certain
generalizations of classical theorems related to polynomial rings are valid.
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The eigenstructure of Beta Operators with
Jacobi Weights

Vlad PAŞCA
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Abstract

The eigenstructure of Beta Operators with Jacobi Weights is pre-
sented. The construction follows the technique used in the eigenstructure
of classical Bernstein operators. Moreover, the limit of the recurrence re-
lation for computing the coefficients among the eigenfunction is described.
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Improving Support Vector Machine Classifiers:
An Information Geometry Approach
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Abstract

Classification is a fundamental task in Machine Learning, where the
goal is to assign predefined labels to input data points based on their
features. The Support Vector Machine (SVM) is one of the powerful
learning techniques for pattern recognition. It embeds patterns into a
higher-dimensional space and uses a kernel function to calculate outputs.
Computation difficulties caused by large degrees of freedom are avoided
when using the kernel method. By analyzing the geometry and the Rie-
mannian structure of the SVM, a method is proposed by Amari in [1] to
improve the performance of a kernel. Experiments show that this tech-
nique brings an improvement of up to 10% in the accuracy of a kernel
based SVM.

References

[1] Amari S., Information Geometry and Its Applications, Springer
194(2000).

[2] Amari S., Wu S., Improving support vector machine classifiers by
modifying kernel functions, Neural Networks, 12.6(1999), 783-789.

[3] Lafferty J., Lebanon G., Jaakkola T. Diffusion kernels on statistical
manifolds, Journal of Machine Learning Research 6(1)(2005).

[4] Williams P., Wu S., Feng J., Improving the performance of the
support vector machine: Two geometrical scaling methods, Support Vector
Machines: Theory and Applications, 2005, 205-218.

[5] Wu S., Amari S., Conformal transformation of kernel functions: A
data-dependent way to improve support vector machine classifiers, Neural
Processing Letters 15(2002), 59-67.

15



On the lifetime of serial-parallel networks with
the lifetime of units exponentially distributed

and the random number of subnets
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Abstract

In the paper, a new lifetime distribution of serial-parallel type net-
works is deduced, a distribution with the approaches of both analytical
and Monte-Carlo simulation methods. The novelty of the distribution con-
sists of having random number of subnetworks, governed by Poisson distri-
bution, lifetimes being independent, identically, exponentially distributed
random variables. We have shown that the most important characteris-
tics of this random variable, the mean, the dispersion, the distribution
function, the Monte-Carlo simulation approximates the same character-
istics with any desired accuracy, by means of, respectively, the mean,
the selection dispersion, but also the empirical function of distribution.
Furthermore, we can also indicate the minimum number of simulations
sufficient to guarantee the desired accuracy with the desired confidence
probability.
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An integral type fixed point theorem
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Abstract

In the present paper we prove an integral type metrical fixed point
theorem for non-self mappings. The existence of fixed point is ensure
by hypotheses formulated in terms of equivalent metric spaces. Some
illustrative examples are also furnished to support the main result.

References
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Weak snd Strong Convergence Theorems for
Krasnoselskii Iterative algorithm in the class of

enriched strictly pseudocontractive and
enriched nonexpansive operators in Hilbert

Spaces
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Abstract

In this paper, we present some results about the aproximation of fixed
points of enriched strictly pseudocontractive and enriched nonexpansive
operators. There are numerous works in this regard (for example [9], [10],
[11] [14], [16], [35] and references to them). Of course, the bibliografical
references are extensive and they are mentioned at the end of this paper.
In order to approximate the fixed points of enriched strictly pseudocon-
tractive and enriched nonexpansive mappings, we use the Krasnoselskii
iterative algorithm for which we prove weak and strong convergence the-
orems.
Also, in this paper, we make a comparative study about some classical
convergence theorems from the literature in the class of enriched strictly
pseudocontractive and enriched nonexpansive mappings.
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Abstract

Copula entropy models have gained prominence as versatile tools for
quantifying and analyzing the information content in multivariate datasets
across a wide array of disciplines. This lecture provides a comprehensive
survey of the applications of copula entropy models in various fields, in-
cluding finance, environmental science, healthcare, and engineering.

In finance, copula entropy models serve as invaluable instruments for
measuring the information content in joint distributions of asset returns.
By assessing the entropy of financial variables, these models contribute
to a deeper understanding of market dynamics, risk assessment, and the
intricacies of portfolio optimization.

Environmental science has benefited from copula entropy models in
assessing the information content and dependence structures within envi-
ronmental variables. These models offer insights into the entropy of cli-
matic and ecological data, aiding in the identification of patterns, trends,
and anomalies crucial for effective environmental monitoring and decision-
making.

In healthcare, copula entropy models play a pivotal role in capturing
the information content of multivariate patient data. By quantifying the
entropy of health-related variables, these models facilitate a more nuanced
understanding of disease patterns, treatment efficacy, and overall patient
outcomes.

In engineering, copula entropy models contribute to the analysis of
information content within complex systems and reliability assessments.
These models enable a quantification of the uncertainty and information
flow among system components, enhancing decision-making processes re-
lated to system design, maintenance, and optimization.

Furthermore, this synthesis explores recent advancements in copula en-
tropy modeling techniques, considering applications of dynamic entropy
models and the incorporation of copula entropy in machine learning frame-
works for improved predictive modeling.

By presenting a mix of the applications of copula entropy models across
diverse fields, this research aims to underscore the versatility and utility
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of these models in capturing and quantifying information content in com-
plex multivariate datasets. The insights provided herein highlight the
significance of copula entropy models as valuable tools for researchers and
practitioners seeking a comprehensive understanding of dependencies and
information flow within various domains.
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Abstract

A continuous linear Hilbert space operator S is said to be a quasi-
isometry if the operator S and its adjoint S∗ satisfy the relation S∗2S2 =
S∗S. Such operators are actually those that act isometrically on their
range. We study the operators having liftings or dilations to quasi-
isometries. We prove that this class of operators is exactly the class of
operators similar to contractions. In particular quasi-isometries are sim-
ilar to contractions. All the results are based on the classical dilation
theory for contractions of B. Sz.-Nagy and C. Foias. Special cases are also
investigated and some examples are provided.

Join to work with Laurian Suciu from Lucian Blaga University of Sibiu.
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Abstract

In this paper, we explore idempotent, tripotent, and nilpotent ele-
ments in H/Zp. We provide concrete examples and establish conditions
for idempotence, tripotence, and nilpotence in H/Zp. Additionally, we
discuss relevant observations regarding the total number of nilpotent and
idempotent elements in H/Zp.
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Abstract

Consider in a real Hilbert space H the following problem, denoted
(Pεµ), {

−εu′′(t) + µu′(t) +Au(t) +Bu(t) ∋ f(t), 0 < t < T,
u(0) = u0, u′(T ) = 0,

where T > 0 is a given time instant, ε > 0, µ ≥ 0 are small parameters, A :
D(A) ⊂ H → H is a maximal monotone operator (possibly multivalued),
and B : H → H is a Lipschitz operator (or monotone and Lipschitz
on bounded sets). Consider also the following reduced problem, denoted
(Pµ), {

µu′(t) +Au(t) +Bu(t) ∋ f(t), 0 < t < T,
u(0) = u0,

where µ > 0, as well as the algebraic equation (inclusion),

Au(t) +Bu(t) ∋ f(t), 0 ≤ t ≤ T. (E00)

We investigate existence and uniqueness of solutions to the above prob-
lems and to equation (E00), as well as continuity of the solution to problem
(Pεµ) with respect to ε > 0 and µ ≥ 0. Moving forward, we are also inter-
ested in the convergence of the solution of problem (Pεµ) to the solution
of problem (Pµ0), as ε → 0+ and µ → µ0, where µ0 is a fixed positive
number, as well as the convergence of the solution of problem (Pεµ) to the
solution of the equation Au+Bu ∋ f(t) as ε → 0+ and µ → 0+. Last, but
not least, we investigate applications in areas such as the regularization of
the nonlinear heat equation, or the regularization of the telegraph system.
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