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Inequalities on Isotropic Submanifolds in
Pseudo-Riemannian Space Forms

Alexandru Ciobanu

Interdisciplinary Doctoral School, Transilvania University of Braşov, Romania
alexandru.ciobanu@unitbv.ro

Abstract

Both spacelike and isotropic submanifolds of pseudo-Riemannian spaces have
interesting properties, studied in Mathematics and Physics as well. We will
present new inequalities for isotropic spacelike submanifolds of pseudo-Riemannian
space forms, respectively a corresponding inequality of a generalized Euler in-
equality and a Ricci inequality [1]. Other submanifolds will be considered.
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Abstract

In this paper, we extend the notion of rigging technique from a null hy-
persurface of Lorentzian manifolds to a null hypersurface of indefinite almost
Hermitian manifolds. We construct an associated Hermitian metric ğ on an in-
definite almost Hermitian manifold (M, g) with a fixed J−rigging ζ and derive
an induced non-degenerate J−rigged metric g̃ on its normalized null hyper-
surface. We prove that the structures (g, J) and (ğ, J) are not simultaneously

Kaehlerian. We obtain equations linking the Levi-Civita connections ∇ and ∇̃
of g and g̃, respectively. We also derive Gauss-Weingarten type formulae for null
hypersurface M of an indefinite Kaehler manifold (M, g, J) with a fixed closed
Killing J−rigging ζ for M . Finally, we establish some relations linking the
curvatures, sectional curvatures, holomorphic sectional curvatures, holomorphic
bisectional curvatures and null sectional curvatures etc. of the ambient manifold
M and normalized null hypersurface (M, ζ).

References

[1] C. Atindogbe, J. P. Ezin and J. Tossa, Pseudo-inversion of degenerate
metrics, Int. J. Math. Math. Sci., 55 (2003), 3479–3501.

[2] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian
Manifolds and Applications (Kluwer Academic Publishers, 1996).

3



[3] M. Gutierrez and B. Olea, Induced Riemannian structures on null hyper-
surfaces, Math. Nachr., 289 (2015), 1219–1236.

4



Empirical Analysis of Reliability of Series-Parallel
versus Parallel-Series Networks by Monte Carlo

Methods
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Abstract

In this paper, the comparative empirical analysis of the reliability of serial-
parallel networks versus parallel-serial networks for dynamic models was per-
formed. These dynamic models were previously exposed to analytical analysis
for the case when the numbers of subnets and units in each subnet are predefined,
constant numbers, but also when the lifetimes of the units are independent ran-
dom variables. The work contains a program product intended for Monte-Carlo
simulation for calculating the reliability of related networks. The estimators
corresponding to the model, the required quantiles and the sample sizes corre-
sponding to the simulation were calculated. With the help of these simulations,
deduced functions were validated for the dynamic model, which is less stud-
ied and proved to be relevant for the static model as well. All the simulation
results were collected in tables and displayed graphically for the convenience
of analyzing the results. The simulations were done for two types of network
structures, using a few examples for which analytical formulas are known, but
can be extended to a wider range of more complex network models.
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Abstract

In this study, we introduce generalized normal ruled surfaces of Frenet-type
framed curves with singular points. We investigate the geometrical properties
and structures of these surfaces. Also, by using the basic singularity theory
framed curves, we give singularity types of generalized normal surfaces. More-
over, since these surfaces have singular points, we examine them as framed
surfaces we calculate the basic invariants of the surface.
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Matrix representations of quaternion algebras over real
numbers and over complex numbers
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Abstract

In this paper I will develop two large chapters related to quaternion algebras
over two known sets. In the first chapter, I will study the properties and matrix
representations of quaternion algebras over the set of complex numbers, and in
the second one, over the set of real numbers..
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Approximation properties of some nonpositive
Kantorovich type operators

Bianca Ioana Vasian
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Abstract

In this paper we will construct a generalization of Bernstein operators using
Kantorovich’s method. In this sense we will use a general derivative operator
denoted by Dl and its corresponding anti-derivative operator I l, having the
property Dl ◦ I l = I l ◦ Dl = Id. We will prove that the convergence on all
continuous functions on [0, 1] holds even though the operators constructed this
way are not positive. Also, a Voronovskaja type theorem will be proved for this
class of operators.
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An eigenvalue problem involving the (p, q)-Laplacian
with a parametric boundary condition
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Abstract

Let Ω in RN , N ≥ 2, be a bounded domain with smooth boundary ∂Ω.
Consider the following nonlinear eigenvalue problem{

−∆pu−∆qu+ ρ(x) | u |q−2 u = λα(x) | u |r−2 u in Ω,
∂u
∂νpq

+ γ(x) | u |q−2 u = λβ(x) | u |r−2 u on ∂Ω,
(1)

where p, q, r ∈ (1,∞) with p ̸= q, α, ρ ∈ L∞(Ω), β, γ ∈ L∞(∂Ω), ∆θu :=
div (∥∇u∥θ−2∇u), θ ∈ {p, q}, and ∂u

∂νpq
denotes the conormal derivative corre-

sponding to the differential operator −∆p − ∆q. Under suitable assumptions
we provide the full description of the spectrum of the above problem in eight
cases out of ten, and for other two complementary cases we obtain subsets of
the corresponding spectra. Notice that when some of the potentials α, β, ρ, γ
are null functions, the above eigenvalue problem reduces to Neumann, Robin or
Steklov type problems, and so we obtain the spectra of these particular eigen-
value problems.

The operator
(
∆p +∆q

)
, called (p, q)-Laplacian, occurs in many two phase

models arising in mathematical physics. For example, if p = 2 and q > 1,
the operator

(
∆ + aq∆q

)
, aq > 0 has applications in Born-Infeld theory for

electrostatic fields (see Bonheure, Colasuonno and Fortunato [4], Fortunato,
Orsina and Pisani [6]). The presence of the positive constant aq instead of 1 is
not important. We also refer to Benci et al. [2] and Benci, Fortunato and Pisani
[3] for more general applications to quantum physics. Two phase equations arise
also in other parts of mathematical physics as reaction diffusion systems (see
Cherfils and Il’yasov [5]) and nonlinear elasticity theory (see Marcellini [10] and
Zhikov [12]).

The study of eigenvalue problems with such a boundary condition is moti-
vated by the particular case p = q = 2, α ≡ 1, β ≡ const. > 0 which was
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investigated by Von Below and François in [11] (see also [7]). They call it a dy-
namical eigenvalue problem as it can be derived from the study of a parabolic
problem with dynamical boundary conditions. Similarly, the motivation behind
problem (1) comes from the study of a double phase parabolic equation (see
Arora and Shmarev [1], Huang [8], Marcellini [9] and the references therein)
under a dynamical boundary condition. The existence theory for local solutions
of such parabolic problems relies on the spectral theory of the associated elliptic
problem with the eigenvalue parameter both in the equation and the boundary
condition.
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An integral type fixed point theorem
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Abstract

In the present paper we prove an integral type metrical fixed point theo-
rem for non-self mappings. The existence of fixed point is ensure by hypotheses
formulated in terms of equivalent metric spaces. Some illustrative examples are
also furnished to support the main result.
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Computing the fuzzy grade of hypergroups of small
cardinality

Federico Mangano
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Mathematics (CITAM), Slovenia

federico.mangano@ung.si

Abstract

The theory of hyperstructures started in the 1930’s thanks to Marty ([6])
and still many unexplored paths exist in it and are studied to this day ([5]).

In 2003 Piergiulio Corsini introduced ([2]) the concept of fuzzy grade for a
hypergroupoid thus increasing the amount of connections between hypergroup
theory and fuzzy set theory.

The first part of the talk is dedicated to introducing the concept of hy-
pergroupoid and in particular the complete hypergroups studied in detail by
Corsini, Angheluţă and Cristea ([1], [4] ).

The concept of join space will then be explained, including the different ap-
proaches one can have regarding it (either building it starting from a hypergroup
or building it with geometry axioms).

The last ideas that are needed to build the foundations required in the follow
up are the ones of fuzzy set (see Zadeh, [7]) and fuzzy grade (that was first given
this name in [3]) that will be discussed in the third part.
Once everything is settled it’s possible to start investigating some properties
of the fuzzy grade, in particular one can notice how in some special cases we
can avoid computations, either because we know that two hypergroupoids are
isomorphic or because we already know the fuzzy grade (the main example of
such an occurrence are hypergroups of cardinality 2g where every element has
a different image under the fuzzy set).

The previous work regarding complete hypergroups will then be reviewed.
Finally an algorithm in sagemath will be introduced that can be used to

compute the fuzzy grade of the join spaces of the type found in the construction.
This is particularly useful in order to look for patterns and check patterns we
suppose exists, all with the goal of finding more hypergroups whose fuzzy grade
can be get without running through all the computations.
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On conformal Riemannian maps whose total manifold
admits a Ricci soliton
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Abstract

We study conformal Riemannian maps between the Riemannian manifolds.
We derive conditions for such maps to be harmonic. Later, we study conformal
Riemannian maps whose total manifold admits a Ricci soliton and present a non-
trivial example of such conformal Riemannian maps. We also obtain conditions
for fiber and range space of such maps to be Ricci soliton and Einstein. We
derive conditions for conformal Riemannian maps whose total manifold admits
a Ricci soliton to be harmonic and biharmonic.
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Majorization results for hd-uniformly Schur convex
functions and ω-m-star convex functions
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Abstract

We present some extensions of majorization results into the framework of
hd-uniformly Schur convex functions. More precisely, we consider the case of
functions which still remain Schur-convex after substracting an homogeneous
symmetric polynomials of even degree. Moreover, we deal with ω-m-star convex
functions into the case of ordered Banach spaces, where the Hardy-Littlewood-
Polya inequality of majorization is still holds. [1]
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[4] C.P. Niculescu, I. Rovenţa, Relative convexity and its applications, Aequa-
tiones Math. 89 (2015), 1389-1400.
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Application of the distribution of the Jones-Larsen
order statistics in the study of city size
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Abstract

In this presentation we analyze the weak stochastic order between Jones–
Larsen distributions and we present an application in the study of the size of
cities in Spain and Romania between 1998–2007. Finally, we will discuss the
importance using this distribution model.
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Abstract

In this paper we investigate the properties of a new generalized Bernstein
type operators.
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Abstract

Using an optimization technique on Riemannian submanifolds, we prove
some sharp inequalities for δ-Casorati curvature invariants of Lagrangian sub-
manifolds in quaternionic space forms, i.e. quaternionic Kähler manifolds of
constant q-sectional curvature. We show that in the class of Lagrangian sub-
manifolds in quaternionic space forms, there are only two subclasses of ideal
Casorati submanifolds, namely the family of totally geodesic submanifolds and
a particular subfamily of H-umbilical submanifolds. Finally, we provide some
examples to illustrate the obtained results. In particular, we point out that
an entire family of ideal Casorati Lagrangian submanifolds can be constructed
using the concept of quaternionic extensor introduced by Oh and Kang in [1,
2]. This is a joint work with M. Aquib, M. S. Lone and G.-E. Vı̂lcu.
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România
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Abstract

The study of the level and sublevel of quaternion algebras is closely related
to bilinear forms attached to these algebras. Knowing the level of a field is as
important as knowing the characteristic of that field.

The level of a field is the smallest natural number n such that −1 can be
expressed as a sum of n squares. Otherwise, if −1 cannot be expressed as a sum
of squares, then we define the level as infinite. The same definition is kept for
commutative rings.

A famous result by Pfister states that if a field has a finite level, then this
level must be a power of 2, and later Dai, Lam and Peng proved that any positive
integer can be the level of a commutative ring.

We present the usual notion of level for quaternion division algebra and some
properties. There are known examples of quaternion division algebra of level
2k and 2k + 1, for any k ≥ 0, constructed by D.W. Lewis, but till now, it is
not known exactly what integer numbers can be considered as the level of a
quaternion algebra or if there exist quaternion division algebras whose levels
are not of this form.
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Abstract

We study slant submersions and conformal slant submersions from nearly
Kaehler manifolds onto Riemannian manifolds and investigate conditions for
such maps to be totally geodesic maps. We also obtain conditions for a slant
submersion and a conformal slant submersion from a nearly Kaehler manifold
onto a Riemannian manifold to be a harmonic map and a harmonic morphism,
respectively.
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Abstract

We define an almost Norden submersion (holomorphic and semi-Riemannian
submersion) between almost Norden manifolds and show that, in most of the
cases, the base manifold has the similar kind as that of total manifold. We obtain
necessary and sufficient conditions for almost Norden submersion to be a totally
geodesic map. We also derive decomposition theorems for the total manifold
of such submersions. Moreover, we study the harmonicity of almost Norden
submersions between almost Norden manifolds and between Kaehler-Norden
manifolds. Finally, we derive conditions for an almost Norden submersion to be
a harmonic morphism.
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Abstract

In this paper, we present some results about the aproximation of fixed
points of nonexpansive and enriched nonexpansive operators. There are nu-
merous works in this regard (for example [6], [7], [9], [10], [14], [16], [35] and
references to them). Of course, the bibliografical references are extensive and
they are mentioned at the end of this paper. In order to approximate the fixed
points of enriched nonexpansive mappings, we use the Krasnoselskii-Mann it-
eration for which we prove weak convergence theorem and the theorem which
offers the convergence rate analysis.
Our results in this paper extend some classical convergence theorems from the
literature from the case of nonexpansive mappings to that of enriched nonex-
pansive mappings. One of our contributions is that the convergence analysis
and rate of convergence results are obtained using conditions which appear not
complicated and restrictive as assumed in other previous related results in the
literature.
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iteration with applications. Numer. Funct. Anal. Optim. 39, 1077-1091 (2018)

[40] Yan, M.: A new primal-dual algorithm for minimizing the sum of three
functions with a linear operator. J. Sci. Comput. 76, 1698-1717 (2018)

[41] Yao, Y., Liou, Y.-C.: Weak and strong convergence of Krasnoselski’s Mann
iteration for hierarchical fixed point problems. Inverse Problems 24, 015015
(2008)

35



A Voronovskaya type theorem associated to geometric
series of Bernstein - Durrmeyer operators

Stefan Lucian Garoiu

Department of Mathematics and Computer Science, Transilvania University of
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Abstract

In this paper we will introduce a quantitative estimate of the convergence of
the operators introduced by U. Abel, that is, we will obtain a Voronovskaya type
theorem concerning some operators which are defined as the geometric series
of Bernstein - Durrmeyer operators, on a certain subspace of L∞ integrable
functions on an interval I. Also, regarding the operators we mentioned, we will
obtain an identity which will be used to prove our main result.
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Abstract

We describe the semi-direct product of the Heisenberg group and the a ne
group which is called the group G: The group G is a subgroup of the Schrodinger
group. We study the group G and its Lie algebra. Then, we find the induced
representations of the group G.
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Abstract

In a Hilbert space H, consider the Cauchy problem{
u′(t) +Au(t) +Bu(t) = f(t), t ∈ [0, T ],
u(0) = u0,

(P0)

where T > 0 is a given time instant, u0 ∈ H is a given initial state, f : [0, T ] → H
and
(hA) A : D(A) ⊂ H → H is a linear, maximal monotone operator;
(hB) B : H → H is a nonlinear Lipschitz operator on H, i.e., there exists L > 0
such that ∀x, y ∈ H, ∥ Bx−By ∥≤ L ∥ x− y ∥H .

Following the method of artificial viscosity introduced by J.L. Lions [7], we
associate with problem (P0) the approximate problem (Pε) :{

−εu′′(t) + u′(t) +Au(t) +Bu(t) = f(t), t ∈ [0, T ],
u(0) = u0, u′(T ) = 0,

(Pε)

where ε is a positive small parameter. We investigate existence, uniqueness
and higher regularity for the solutions of problems (P0) and (Pε). Then we
establish asymptotic expansions of order zero and of order one for the solution
of problem (Pε). Problem (Pε) turns out to be regularly perturbed of order zero
and singularly perturbed of order one with respect to the norm of C([0, T ];H).
However, the boundary layer of order one is not visible through the norm of
L2(0, T ;H). This paper is a significant extension of a previous one by M. Ahsan
and G. MoroÅŸanu [2]. The framework created here allows the treatment of
hyperbolic problems (besides parabolic ones). Specifically, our main result is
illustrated with the semilinear telegraph system (thus extending a result by
N.C. Apreutesei and B. Djafari Rouhani [3]) and the semilinear wave equation.
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Abstract

In this paper, we give some congruences related to q− generalized Catalan
numbers, q−harmonic numbers and alternating q−harmonic numbers.
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Abstract

In this study, we introduce Positional Adapted Frame (PAF) in the three-
dimensional Lie groups. Also, we give Frenet-Serret type derivative formulas
with respect to PAF by means of Lie curvature and examine some special cases
of Lie curvature in the three-dimensional Lie groups. Then, we construct Berry
phase model of the polarized light wave along an optical fiber related to PAF
in the three-dimensional Lie groups.

References

[1] Arnold, V.I., Sur la geometrie differentielle des groupes de Lie de di-
mension infinie et ses applications a l’hydrodynamique des fluides parfaits, In
Annales de l’institut Fourier (Grenoble), 16(1)(1966), 319-361.

[2] Barros, M., Magnetic helices and a theorem of Lancret, Proceedings of
the American Mathematical Society, 125(5)(1997), 1503-1509.

[3] Barros, M., Cabrerizo, J.L., Fernandez, M., Romero, A., Magnetic vortex
flament flows, Journal of Mathematical Physics, 48(8)(2007), 082904.

[4] Berry, M.V. Quantal phase factors accompanying adiabatic changes, Pro-
ceedings of the Royal Society of London. A. Mathematical and Physical Sci-
ences,, 392(1802), 45-57.

[5] Bishop, R.L., There is more than one way to frame a curve, The American
Mathematical Monthly, 82(3)(1975), 246-251.

42



[6] Bozkurt, Z., Gök, İ., Okuyucu, O. Z., Ekmekçi, N., Characterizations of
rectifying, normal and osculating curves in the three-dimensional compact Lie
groups, Life Science Journal, 10(3)(2013), 819-823.
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[24] Gürbüz, N.E., The evolution of an electric field with respect to the type-1

PAF and the PAFORS frames in R3
1, Optik, 250(1)(2022), 168285.
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