Latex typing Math

```
Add $a$ squared and $b$ squared
to get $c$ squared. Or, using
a more mathematical approach
 \begin{equation}
   a^2 + b^2 = c^2
 \end{equation}
Einstein says
 \begin{equation}
   E = mc^2 \label{clever}
 \end{equation}
He didn't say
 \begin{equation}
  1 + 1 = 3 \setminus tag\{dumb\}
 \end{equation}
This is a reference to
\eqref{clever}.
```

Add a squared and b squared to get c squared. Or, using a more mathematical approach

$$a^2 + b^2 = c^2 (3.1)$$

Einstein says

$$E = mc^2 (3.2)$$

He didn't say

$$1 + 1 = 3 \tag{dumb}$$

This is a reference to (3.2).

Add \$a\$ squared and \$b\$ squared to get \$c\$ squared. Or, using a more mathematical approach \begin{equation*} a^2 + b^2 = c^2 \end{equation*} or you can type less for the same effect: \[a^2 + b^2 = c^2 \]

Add a squared and b squared to get c squared. Or, using a more mathematical approach

$$a^2 + b^2 = c^2$$

or you can type less for the same effect:

$$a^2 + b^2 = c^2$$

```
This is text style:
$\lim_{n \to \infty}
 \sum_{k=1}^n \frac{1}{k^2}
 = \frac{\pi^2}{6}$.
And this is display style:
 \begin{equation}
 \lim_{n \to \infty}
 \sum_{k=1}^n \frac{1}{k^2}
 = \frac{\pi^2}{6}
 \end{equation}
```

This is text style: $\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6}$. And this is display style:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6} \tag{3.3}$$

A \$d_{e_{e_p}}\$ mathematical expression followed by a \$h^{i^{g^h}}\$ expression. As opposed to a smashed \smash{\$d_{e_{e_p}}\$} expression followed by a \smash{\$h^{i^{g^h}}\$} expression.

A $d_{e_{e_p}}$ mathematical expression followed by a $h^{i^{g^h}}$ expression. As opposed to a smashed $d_{e_{e_p}}$ expression followed by a $h^{i^{g^h}}$ expression.

Mathematics and Text inside a formula

\$x^{2} \geq 0\qquad
\text{for all } x
\in \mathbb{R}\$

 $x^2 \ge 0$ for all $x \in \mathbb{R}$

The commands \overline and \underline create horizontal lines directly over or under an expression:

$$0.\overline{3} = \underline{\underline{1/3}}$$

The commands \overbrace and \underbrace create long horizontal braces over or under an expression:

$$\underbrace{a+b+c\cdot d+e+f}_{\text{meaning of life}} = 42$$

For binary relations it may be useful to stack symbols over each other. \stackrel{#1}{#2} puts the symbol given in #1 in superscript-like size over #2 which is set in its usual position.

```
\begin{equation*} f_n(x) \Rightarrow f_n(x) \stackrel{*}{\approx} 1 \end{equation*}
```

To get more control over the placement of indices in complex expressions, amsmath provides the \substack command:

$$\sum_{\substack{0 < i < n \\ j \subseteq i}}^n P(i,j) = Q(i,j)$$

```
\begin{eqnarray}
  a & = & b + c \\
  & = & d + e + f + g + h + i
  + j + k + l \nonumber \\
  && +\: m + n + o \\
  & = & p + q + r + s
\end{eqnarray}
```

```
a = b+c (3.12)

= d+e+f+g+h+i+j+k+l

+m+n+o (3.13)

= p+q+r+s (3.14)
```

```
\begin{equation*}
  \mathbf{X} = \left(
    \begin{array}{ccc}
      x_1 & x_2 & \ldots \\
      x_3 & x_4 & \ldots \\
      \vdots & \vdots & \ddots
  \end{array} \right)
\end{equation*}
```

$$\mathbf{X} = \left(\begin{array}{ccc} x_1 & x_2 & \dots \\ x_3 & x_4 & \dots \\ \vdots & \vdots & \ddots \end{array} \right)$$

```
\begin{equation*}
  |x| = \left\{
    \begin{array}{rl}
    -x & \text{if } x < 0,\\
    0 & \text{if } x = 0,\\
    x & \text{if } x > 0.
    \end{array} \right.
\end{equation*}
```

$$|x| = \begin{cases} -x & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ x & \text{if } x > 0. \end{cases}$$

Table 3.1: Math Mode Accents.

\hat{a}	\hat{a}	\check{a}	\check{a}	$ ilde{a}$	$ ilde{a}$
\grave{a}	\grave{a}	\dot{a}	\dot{a}	\ddot{a}	\dot{a}
\bar{a}	\bar{a}	\vec{a}	\vec{a}	\widehat{AAA}	\widehat{AAA}
\acute{a}	\acute{a}	$reve{a}$	\breve{a}	\widetilde{AAA}	\widetilde{AAA}
\mathring{a}	\mathring{a}				

Table 3.2: Greek Letters.

There is no uppercase of some of the letters like \Alpha, \Beta and so on, because they look the same as normal roman letters: A, B...

α	\alpha	θ	\theta	o	0	v	\upsilon
β	\beta	ϑ	\vartheta	π	\pi	ϕ	\phi
γ	\gamma	ι	\iota	$\overline{\omega}$	\varpi	φ	\varphi
δ	\delta	κ	\kappa	ho	\rho	χ	\chi
ϵ	\epsilon	λ	\lambda	ϱ	\varrho	ψ	\psi
ε	$\vert varepsilon$	μ	\mu	σ	\sigma	ω	\omega
ζ	\zeta	ν	\nu	ς	\varsigma		
η	\eta	ξ	\xi	au	\tau		
Γ	\Gamma	Λ	\Lambda	\sum	\Sigma	Ψ	\Psi
Δ	\Delta	Ξ	\Xi	Υ	\Upsilon	Ω	\Omega
Θ	\Theta	Π	\Pi	Φ	\Phi		

Table 3.3: Binary Relations.

You can negate the following symbols by prefixing them with a \not command.

<	<	>	>	=	=
\leq	$\leq or \leq o$	\geq	\geq or \ge	=	\equiv
\ll	\11	\gg	\gg	\doteq	\doteq
\prec	\prec	\succ	\succ	\sim	\sim
\preceq	\preceq	\succeq	\succeq	\simeq	\simeq
\subset	\subset	\supset	\supset	\approx	\approx
\subseteq	\subseteq	\supseteq	\supseteq	\cong	\cong
	\sqsubset a		\sqsupset a	\bowtie	$\backslash ext{Join}^{\ a}$
	\sqsubseteq	\supseteq	\sqsupseteq	\bowtie	\bowtie
\in	\in	\ni	\ni ,\owns	\propto	\propto
\vdash	\vdash	\dashv	\dashv	 	\models
	\mid		\parallel	\perp	\perp
$\overline{}$	\smile	$\overline{}$	\frown	\asymp	$\agnumber \agnumber \agn$
:	:	∉	\n	\neq	\neq or \ne

Table 3.4: Binary Operators.

+	+	_	-		
\pm	\pm	Ŧ	\mp	⊲	\triangleleft
	\cdot	÷	\div	\triangleright	\triangleright
X	\times	\	\setminus	*	\star
U	\cup	\cap	\cap	*	\ast
Ц	\sqcup		\sqcap	0	\circ
V	\vee , \lor	\wedge	\wedge , \land	•	\bullet
\oplus	\oplus	\ominus	\ominus	\Diamond	\diamond
\odot	\odot	\oslash	\oslash	\biguplus	\uplus
\otimes	\otimes	\bigcirc	\bigcirc	П	\amalg
\triangle	\bigtriangleup	∇	\bigtriangledown	†	\dagger
\triangleleft	\backslash lhd a	\triangleright	$\backslash \mathtt{rhd}^{\;\;a}$	‡	\ddagger
\leq	\backslash unlhd a	\trianglerighteq	\unrhd a	?	\wr

Table 3.5: BIG Operators.

\sum	\sum	U	\bigcup	V	\bigvee
\prod	\prod	\cap	\bigcap	\wedge	\bigwedge
\coprod	\coprod		\bigsqcup	+	\biguplus
\int	\int	∮	\oint	\odot	\bigodot
\oplus	\bigoplus	\otimes	\bigotimes		

Table 3.6: Arrows.

\leftarrow	\leftarrow or \gets		\longleftarrow
\rightarrow	\rightarrow or \to	\longrightarrow	\longrightarrow
\leftrightarrow	\leftrightarrow	\longleftrightarrow	\longleftrightarrow
\Leftarrow	\Leftarrow	\leftarrow	\Longleftarrow
\Rightarrow	\Rightarrow	\Longrightarrow	\Longrightarrow
\Leftrightarrow	\Leftrightarrow	\iff	\Longleftrightarrow
\mapsto	\mapsto	\longmapsto	\longmapsto
\leftarrow	\hookleftarrow	\hookrightarrow	\hookrightarrow
	\leftharpoonup		\rightharpoonup
$\overline{}$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\overline{}$	\rightharpoondown
$\stackrel{\smile}{\longleftarrow}$	\rightleftharpoons	\iff	\iff (bigger spaces)
\uparrow	\uparrow	\downarrow	\downarrow
‡	\updownarrow	1	\Uparrow
\Downarrow	\Downarrow	1	\Updownarrow
>	\nearrow	\searrow	\searrow
/	\swarrow	_	\nwarrow
\sim	$ackslash$ leadsto a		

Table 3.7: Arrows as Accents.

\overrightarrow{AB}	\overrightarrow{AB}	AB	\underrightarrow{AB}
\overline{AB}	\overleftarrow{AB}	AB	\underleftarrow{AB}
\overrightarrow{AB}	\overleftrightarrow{AB}	$\stackrel{AB}{\rightleftharpoons}$	\underleftrightarrow{AB}

Table 3.8: Delimiters.

```
\uparrow
[ or \lbrack ]
             ] or \rbrack
                           \downarrow
\{ or \lbrace \} \} or \rbrace
                           \updownarrow
\langle
         \rangle
                           \Uparrow
                          \Downarrow
\ \backslash
                          \Updownarrow
\lfloor
           \rfloor
             \lceil
\rceil
```

Table 3.9: Large Delimiters.